Planning for LTL_f Goals in Presence of Uncertainty on the Initial State

Luciana Silo¹

¹Sapienza University of Rome <u>silo@diag.uniroma1.it</u> Joint work with Giuseppe De Giacomo

ERC Advanced Grant

WhiteMech: **EFC** White-box Self Programming Mechanisms

Motivation

We are interested in **Planning for Temporally Extended Goals**. This setting has been extensively studied in the literature, e.g.:

- use of Temporally Extended Goals on Infinite Traces [De Giacomo & Vardi 1999]
 - they handle <u>uncertainty on initial state</u>, but only for the infinite traces setting
- use of Temporally Extended Goals on Finite Traces
 - deterministic planning [Baier & McIlraith 2006] and non-deterministic planning [DeGiacomo & Rubin 2018]
 - they handle temporal goals on finite traces, but without <u>uncertainty on initial</u> state

Goal: we extend the work of [De Giacomo, Vardi 1999] in the <u>finite traces</u> <u>setting (with LTLf goals)</u>

Linear Temporal Logic on Finite Traces

LTL $_f$: the language

 $\varphi ::= A \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathcal{U} \varphi_2$

- A: atomic propositions
- $\neg \varphi, \varphi_1 \land \varphi_2$: boolean connectives
- $\bigcirc \varphi$: "next step exists and at next step (of the trace) φ holds"
- $\varphi_1 \mathcal{U} \varphi_2$: "eventually φ_2 holds, and φ_1 holds until φ_2 does"
- • $\varphi \doteq \neg \bigcirc \neg \varphi$: "if next step exists then at next step φ holds" (weak next)
- $\Diamond \varphi \doteq \operatorname{true} \mathcal{U} \varphi$: " φ will eventually hold"
- $\Box \varphi \doteq \neg \Diamond \neg \varphi$: "from current till last instant φ will always hold"
- Last $\doteq \neg \bigcirc$ true: denotes last instant of trace.

Properties: expressibility (FOL over finite sequences or Star-free RE), reasoning (satisfiability, validity, entailment PSPACE-complete), model checking (linear on TS, PSPACE-complete on formula)

Non Deterministic Finite State Automata

An NFA is a tuple $\mathcal{A} = (\Sigma, Q, Q_0, \delta, F)$:

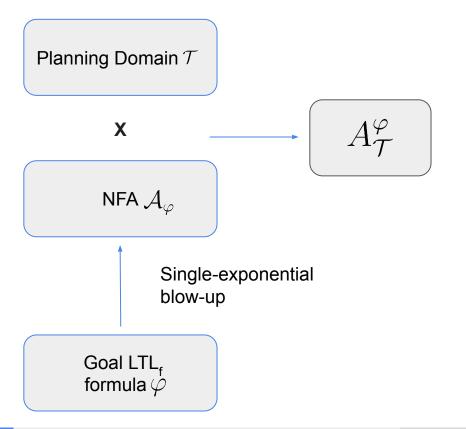
- \sum is the alphabet;
- Q is a finite set of states;
- $Q_0 \subseteq Q$ is the set of initial states;
- $\delta = Q \times \Sigma \to 2^Q$ is the nondeterministic transition relation;
- $F \subseteq Q$ is the set of accepting states

Planning Domain

A planning domain is transition system $\mathcal{T} = (S, S_0, Act, R, Obs, \pi)$

- S is the finite set of possible states;
- $S_0 \subseteq S$ is the finite set of possible initial states;
- Act is the set of possible actions;
- R: S × Act → S is the transition function that given a state and an action returns the next state;
- Obs is the finite set of possible observations
- $\pi: S \to Obs$ is the observability function

Planning for LTL_f goals: the idea



The product automaton recognizes all plans that achieves the goal in the domain

Luciana Silo (Sapienza University) Planning for LTL, Goals in Presence of Uncertainty on the Initial State On the Effectiveness of Temporal Logic on Finite Traces in AI

Standard Planning

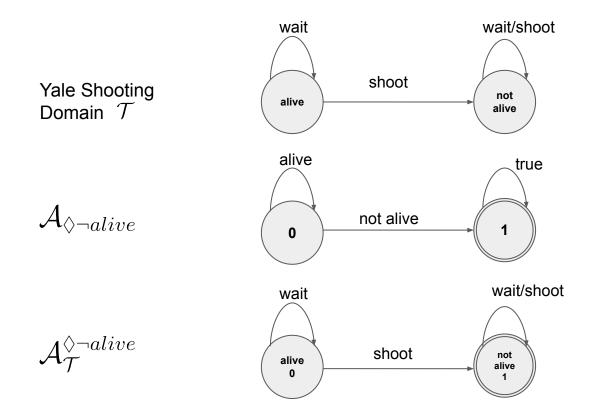
Complete information on the initial state: initial state is a singleton $\{s_0\} \subseteq S$, set of observations coincides with the set of states Obs = S

To synthesize a plan compute NFA $\mathcal{A}_{\mathcal{T}}^{\varphi} = (Act, \mathcal{S}_T, \mathcal{S}_{T_0}, \delta_T, F_T)$:

- $\mathcal{S}_T = Q \times S$
- $\mathcal{S}_{T_0} = Q_0 \times \{s_0\}$
- $(q_j, s_j) \in \delta_T((q_i, s_i), a)$ iff $s_j = R(s_i, a)$ and $q_j \in \delta(q_i, \pi(s_i))$ • $F_T = F \times S$

Theorem: A plan p for \mathcal{T} realizing the specification \mathcal{A}_{φ} exists iff $L(\mathcal{A}_{\mathcal{T}}^{\varphi}) \neq \emptyset$.

Standard Planning-Yale Shooting Example



Conformant Planning

Incomplete information on the initial state and no observability on the states: $S_0 = \{s_{00}, \dots, s_{0k-1}\}$ for k > 1

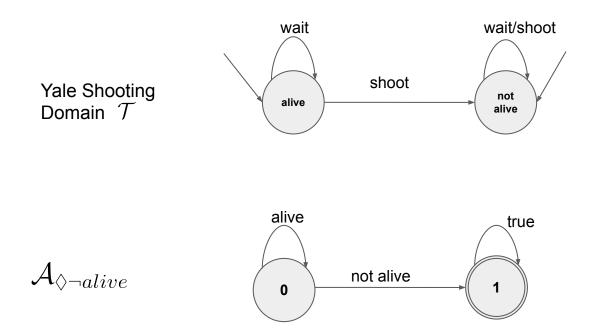
To synthesize a plan compute NFA $\mathcal{A}_{\mathcal{T}}^{\varphi} = (Act, \mathcal{S}_T, \mathcal{S}_{T_0}, \delta_T, F_T)$:

•
$$S_T = Q^k \times S^k$$

• $S_{T0} = Q_0^k \times \{(s_{00}, \dots, s_{0k-1})\}$
• $(\overrightarrow{q_j}, \overrightarrow{s_j}) \in \delta_T((\overrightarrow{q_i}, \overrightarrow{s_i}), a)$ iff $s_{jh} = R(s_{ih}, a)$ and $q_{jh} \in \delta(q_{ih}, \pi(s_{ih}))$
for $h = 0, \dots, k-1$
• $F_T = F^k \times S^k$

Theorem: A plan p for \mathcal{T} realizing the specification \mathcal{A}_{φ} exists iff $L(\mathcal{A}_{\mathcal{T}}^{\varphi}) \neq \emptyset$.

Conformant Planning-Yale Shooting Example

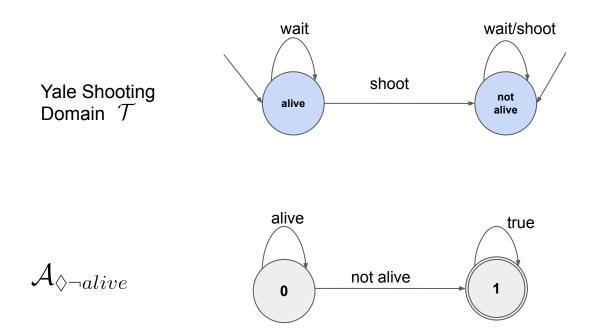


10 / 14

Luciana Silo (Sapienza University) Planning for LTL_c Goals in Presence of Uncertainty on the Initial State On the Effectiveness of Temporal Logic on Finite Traces in AI

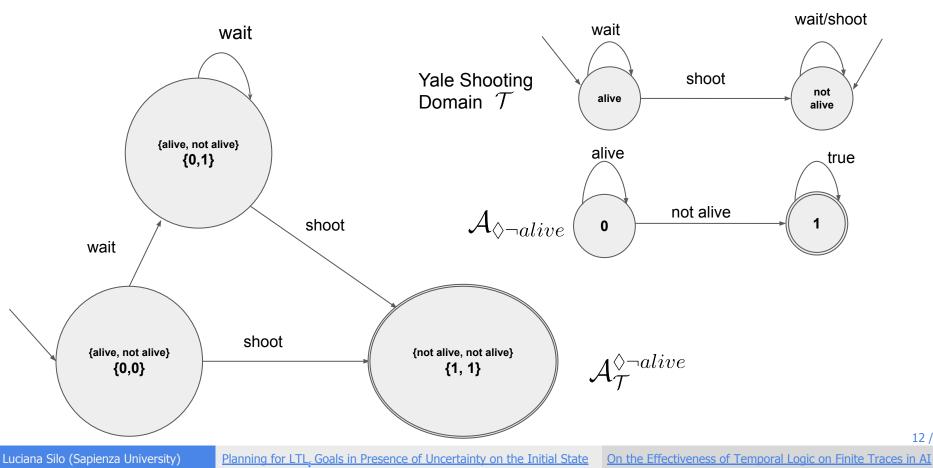
Conformant Planning-Yale Shooting Example

Possible initial states



Luciana Silo (Sapienza University) Planning for LTL_c Goals in Presence of Uncertainty on the Initial State On the Effectiveness of Temporal Logic on Finite Traces in AI

Conformant Planning-Yale Shooting Example



Contingent Planning

Incomplete information on the initial state and observability on the states

To synthesize a plan compute NFA $A_T^{\varphi} = (Act^k, \mathcal{S}_T, \mathcal{S}_{T0}, \delta_T, F_T)$:

•
$$S_T = Q^k \times S^k \times \mathcal{E}_k$$

• $S_{T0} = Q_0^k \times \{(s_{00}, \dots, s_{0k-1})\} \times \equiv_0 \text{ where } i \equiv_0 j \text{ iff } s_{0i} = s_{0j}$
• $(\vec{q}_j, \vec{s}_j, \equiv') \in \delta_T((\vec{q}_i, \vec{s}_i), \vec{a}, \equiv) \text{ iff } s_{jh} = R(s_{ih}, a_h) \text{ and}$
if $l \equiv m$ then $a_l = a_m, l \equiv' m$ iff $l \equiv m$ and $\pi(s_{jl}) = \pi(s_{jm})$

• $F_T = F^k \times S^k \times \mathcal{E}_k$ **Theorem:** A plan p for \mathcal{T} realizing the specification \mathcal{A}_{φ} exists iff $L(\mathcal{A}_{\mathcal{T}}^{\varphi}) \neq \emptyset$.

Luciana Silo (Sapienza University)

Conclusion

Contributions:

- Extension of the work of [De Giacomo, Vardi 1999] in the finite traces setting with LTLf goals
- The techniques introduced here can be extended to work for a wide range of transition-based formalisms
- □ The approach works for any temporal specification language that can be translated into automaton (e.g. LDL_f, PPLTL, PPLDL etc.)

Future works:

- Investigate the complexity of the planning problems
- Provide implementations of the presented techniques
- □ Find interesting use-cases and applications