Declarative Process
Management and Mining

A killer application for LTLf

Marco Montali unibz
Free University of Bozen-Bolzano e LTLf SSS 2023, San Francisco

What do we do in Bolzano

We develop and applied techniques

grounded In , logics, formal
methods, and data science

to create intelligent agents and information
systems that combine

processes and data.

Al for...

.. flexible, declarative
agents/processes

.. process mining and
operational support

... data-aware
agents/processes

Three Interconnected lines of research

Advancement In

the foundations

and applications
of:

iInformation

systems

Q

artificial
Intelligence

Warm up:
process management and mining

Business process

value

[
assets/partners organisation customers

Business process

value

[
assets/partners organisation customers

Business process

[
assets/partners organisation customers

A business process is a collection of related events, activities and
decisions, that involve a number of actors and objects, and that collectively
lead to an outcome that is of value to an organization or its customers

REALITY

process
discovery

managers/
knowledge analysts
workers

ORGANISATION

event logs
Caseid Eventid Properties
Timestamp Activity Resource Cost

1 35654423 30-12-2010:11.02 register request Pete 50

35654424 31-12-2010:10.06 examine thoroughly Sue 400

35654425 05-01-2011:15.12 check ticket Mike 100

35654426 06-01-2011:11.18 decide Sara 200

35654427 07-01-2011:14.24 reject request Pete 200
2 35654483 30-12-2010:11.32 register request Mike 50

35654485 30-12-2010:12.12 check ticket Mike 100

NELREINN0Q7T 22N 1D ININ.-1 14 14 P 11~ DAt A NN

ship id

@ @ record ~
ship info
receive

entrance request

ship type (short name)

process models

~~N
models

RN R

N & record
inspect ship cargo
residuals

S

acquire = record
certificate exp. date

| cargo residuals

entel

= decice
clearance

J

JJ

refuel

certificate exp. date

process models

event logs

model-driven

process management

process models

event logs

Model-driven process management

1. process discovery via conceptual modelling

Model-driven process management

1. process discovery via conceptual modelling

process analyst

domain expert

Refuel area determination
Enter Length Cargo “ : :
; e efuel Area tried entering | Harbor
U (m) (mg/cm*) _ .
id-code Into location
y,n >0 >0 none, indoor, outdoor name . .
1 n — — none 1 .
2 y < 350 — indoor Ky
3 y > 350 <0.3 indoor Certificate Y
4 y > 350 > 0.3 outdoor m
when
- N < outcome
ship id & éa record cargo residuals enter (_»@
~—| inspect ship /| cargo g
. sen
. J . residuals y, N refusal
r{.'?.} A (5 | D
record decice
L -1 enter?
ship info clearance
receive . J \ y
entrance request 293 . ~ 293 ~\ Y - N
; acquire | o record o open
certificate exp. date dock
\ J \ J \ y
certificate exp. date OBl EEE
send

ship type (short name) fuel area info

Model-driven process management

2. share and understand

Refuel area determination

E Length | C __ship | yieq enten
nter eng g0, Refuel Area tried entering | __Harbor
U (m) (mg/cm®)
y,n >0 >0 none, indoor, outdoor
1 n — — none
2 < 350 — indoor 0..1
3 > 350 <0.3 Certificate
4 > 350 > 0.3 exp-date
S & recor
inspect ship cargq
residu
N
Y
= acquire = recor(
certificate exp. de

teo>

.........

refuel area

=

send
fuel area info

short name)

Model-driven process management

3. use models

quantitative analysis/simulation

model checking

& record cargo residuals

ship id iz

seccccccccca

~—»| inspect ship cargo
residuals sond
& .
record = decice
L -1 enter?
ship info clearance
receive i -
entrance request X & & A A X
: acquire record) & open
: certificate exp. date - dock
Seeeeecnes > :
''''' = certificate exp. date . refuel area
"""""""""""""""""""""""""""" send
ship type (short name) fuel area info

sscamunda tasklist O cCreatetask ElStartprocess L demo A~
© Create afilter - createdv © —_— = Add Comment ©
6 Search for Task 1
i o Assign Approver
o 50 Invoice Receipt
ASSign Approver _
y Invoice Receipt @ Set follow-up date A in3days % I Add groups L Demo Demo %
My Group Tasks ~
W 8 minutes ago 4 Demo Demo Form History Diagram Description
A in 3 days
AcCcou nting Involce Amount: Involce Number:
30€ GPFE-23232323 Who should approve this invoice?
v
' Creditor
John's Tasks . 50 =
Assign Approver Great Pizza for Everyone Inc.
Invoice Receipt
; Amount
Marv's Tasks A 8 minutes ago 4 Demo Demo
Y A in 3 days 30€

process models

event logs

process models

event logs

data-driven
process management

Management vs reality

process

model

Management vs reality

real process

Process mining: “data science in action”

Wil van der Aalst

Process

Mlnlng

Data Scie
Second Edition

https://www.tf-pm.org

The process mining framework
Original picture by Wil van der Aalst

) . supports/ |
world business controls ”
processes Software
people machines system
components B
organizations) records
events, e.qg.,
N N messages,
models czaefigﬂfess trans:[c(::tions,
analyzes Implements Y |

analyzes
T P N
(process) event
model logs

~ ~

The process mining framework
Original picture by Wil van der Aalst

) . supports/ |
world business controls ”
processes Software
people machines system
components B
organizations) records
events, e.qg.,
N N messages,
models cﬁgﬂf;s trans;c;tions,
analyzes Implements Y |

/ \ analyzes / \
\ / discovery \ /

(process) e event
model conformance

Play In: discovery

Case | Activity Timestamp Resource
432 register travel request (a) 18-3-2014:9.15 | John

432 get support from local manager (b) [18-3-2014:9.25 | Mary

432 check budget by finance (d) 19-3-2014:8.55 | John

432 decide (e) 19-3-2014:9.36 | Sue

432 accept request (g) 19-3-2014:9.48 | Mary

get support
from local
manager (b)

reqgister travel
request (a)

get detailed
motivation
letter (c)

start

check budget
by finance (d)

decide (e)

accept
request (g)

(reinitiate

L request (f)

reject
request (h)

end

Replay: enhancement

b
OEnreSnJerrine

abdf40

acdfs
acdecdf
abdebdfs
abdecdf?

Replay: enhancement

98

b}
o-0-¢ © ore-n-e

abdf40

acdfs
acdecdf
abdebdfs
abdecdf?

Replay: conformance checking

O

acdf
abcdf
abcdecbdf
abcfd
acdecfd

Replay: conformance checking

o* " %,

“b” sometimes skipped

abcdf d” and “f” sometimes swapped

abcdecbdf
abcfd
acdecfd

Are all
processes

the same
t,

On control and flexibility

complexity ->

repetitiveness <-

On control and flexibility

Control

degree to which a
central
orchestrator
decides how to
execute the
Process

omplexity ->

repetitiveness <-

On control and flexibility

Control

degree to which a
central
orchestrator
decides how to
execute the
Process

omplexity ->

repetitiveness <-

Flexibility

degree to which
DrOCESS
stakeholders
locally decide how
to execute the
DrOCESS

Control

degree to which a
central
orchestrator
decides how to
execute the
Process

On control and flexibili

mplexity ->

repetitivvaness <-

Flexibility

degree to which
DrOCESS
stakeholders
locally decide how
to execute the
DrOCESS

Which Italian food do vou like best?

Control

degree to which a
central
orchestrator
decides how to
execute the
Process

Lasagna
processes

| —
4K
C 2

Spaghett
OrOCESSES

Flexibility

degree to which
DrOCESS
stakeholders
locally decide how
to execute the
DrOCESS

Reality is often more flexible than it seems...

Reality is often more flexible than it seems...

Wb ven paps
/ P —_— —— Sk
2 2] = = L , g T
‘ ~ L st \
ok e
\
s A \
- - - - |
- >
'
™
A - = SRS oS = o - g = =% o 45 cis .
. > -
o - - - et e =
"t . e -~ . - "
o > ’ Colavvrevra
- . T Rbedpyer
- - - \ 3 2
s - — = - -- - - - w - e 1-GD SN T 't
v P’ R b Ay
4 - ~— - i A B e
. - (e—
Y v
. L o

Outline

Outline

The DECLARE
declarative approach

How to capture flexible processes? z

Outline

LTLf and automata to
the rescue

The DECLARE
declarative approach

Which foundations?

Outline

Declarative process
discovery

Enactment and
monitoring LTLf and automata to

the rescue

The DECLARE
declarative approach

Framework in action!

Outline

5 exciting research
lines

Enactment and
monitoring

Declarative process
discovery

LTLf and automata to
the rescue

What is a process?

A possibly Iinfinite set of finite traces

What is a process?

A possibly infinite set of finite traces

Flexibility and control as contrasting forces

A process...

... and an imperative model of It

Generalisation

Generalisation

pick pick
' |tem ‘ |tem
‘ Q close Q .
order pay
O

The declarative approach

7 LR

= LiFY Simplicity

4 cannot be
obtained by

- sweeping
complexity

under the

carpet

Our goal

represents q

Compact Reality
specification

Our goal

represents S

The class of

“regular”
spaghetti processes!

Compact Reality
specification

“Framing” via declarative specifications

Process Imperative Declarative
model specification

“Framing” via declarative specifications

Process Imperative Declarative
model specification

Constraint-based specifications of behaviour

 Multiagent systems: declarative agent programs |Fisher,JSC1996]
and interaction protocols |Singh,AAMAS2003]

 Data management: cascaded transactional updates
[DavulcuEtAl,PODS1998]

* BPM (1st wave): loosely-coupled subprocesses [SadigEtAlLER2007]

* BPM (2nd wave): process constraints

e DECLARE [PesicEtALEDOC2007]

 Dynamic Condition-Response (DCR) Graphs
[HildebrandtEtAl,PLACES2010]

Origin of Declare...

Language, formalisation, reasoning, enactment

Constraint-Based

Workflow Management Systems:
Shifting Control to Users

PROEFSCHRIFT

LNBIP 56

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de :
Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een A Lognc-Based hppanCh
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 8 oktober 2008 om 16.00 uur

door

Maja Pesic¢

geboren te Belgrado, Servié

Which constraints are useful?

Patterns in Property Specifications
for Finite-State Verification*

Matthew B. Dwyer
Kansas State University
Department of Computing
and Information Sciences
Manhattan, KS 66506-2302
+1 785 532 6350
dwyer@cis.ksu.edu

ABSTRACT

Model checkers and other finite-state verification tools
allow developers to detect certain kinds of errors au-
tomatically. Nevertheless, the transition of this tech-
nology from research to practice has been slow. While
there are a number of potential causes for reluctance to
adopt such formal methods, we believe that a primary
cause is that practitionérs are unfamiliar with specifi-
cation processes, notations, and strategies. In a recent
paper, we proposed a pattern-based approach to the
presentation, codification and reuse of property specifi-
cations for finite-state verification. Since then, we have
carried out a survey of available specifications, collect-
ing over 500 examples of property specifications. We
found that most are instances of our proposed patterns.
Furthermore, we have updated our pattern system to
accommodate new patterns and variations of existing
patterns encountered in this survey. This paper reports
the results of the survey and the current status of our
pattern system.

George S. Avrunin
University of Massachusetts
Department of Mathematics

and Statistics
Ambherst, MA 01003-4515

+1 413 545 4251
avrunin@math.umass.edu

James C. Corbett
University of Hawai‘i
Department of Information
and Computer Science
Honolulu, HI 96822

+1 808 956 6107
corbett@hawaii.edu

cess support for formal methods.

We believe that the recent availability of tool support
for finite-state verification provides an opportunity to
overcome some of these barriers. Finite-state verifica-
tion refers to a set of techniques for proving properties
of finite-state models of computer systems. Properties
are typically specified with temporal logics or regular
expressions, while systems are specified as finite-state
transition systems of some kind. Tool support is avail-
able for a variety of verification techniques including,
for example, techniques based on model checking [19],
bisimulation [4], language containment [14], flow anal-
ysis [10], and inequality necessary conditions [1]. In
contrast to mechanical theorem proving, which often
requires guidance by an expert, most finite-state verifi-
cation techniques can be fully automated, relieving the
user of the need to understand the inner workings of the
verification process. Finite-state verification techniques
are especially critical in the development of concurrent

e eorvds /e M “vl-\nstt\ - N An‘-nwm:rr:a‘-:n "\nl‘\n!r;t\i‘ mobna #nai—

Constraint templates

Constraint types defined on activity placeholders, each with a specific
meaning

* ... then instantiated on actual activities (by grounding)

Dimensions
e Activities: how many are involved

 Time: temporal orientation (past, future, either) and strength (how close)
 Expectation: negative vs positive

Much richer than the precedence flow relation of imperative languages

Declare specification

A set of constraints
= templates grounded on the activities of interest

* Constraints have to be all satisfied over a complete
execution trace

 Compositional approach by conjunction

confirm hi
shi
order P

finalize
order

reject n?tify
order sh}pment
1ssue

Example

confirm <hi
order P

at most one

finalize
order

reject n?tlfy
order sh}pment
i1ssue

confirm <hi
order P

(disjunctive) response

finalize
order

reject notify

order

shipment
i1ssue

Example

confirm

order ship

finalize
e

shipment
1ssue

order

confirm

order ship
finalize
order
notify
shipment

responded existence

issue

confirm
order

finalize
order

notify

shipment
i1ssue

Interaction among constraints

Aka hidden dependencies

If you cancel the order,

Cancel you cannot pay for it
order

Pay

Cl
0S¢ If you close the order,
order :
you must pay for it

To close an order, you
must first pick an item

Pick
1tem

Interaction among constraints

Aka hidden dependencies

If you cancel the order,
you cannot pay for it

Pay

To close an order, yo
must first pick an item

Pick ose

. If you close the order,

1tem order :
you must pay for it

Quiz: does this specification accept traces?

b
> 1]

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

PRECEDENCE(d, a)

Quiz: does this specification accept traces?

ATMOSTONE(d)

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

E]

Only the empty trace <>,

due to finite-trace
semantics

How to understand If How to
a Declare characterise the

specification Is traces of a Declare
correct? specification?

=P FoIENENEE @ o ANIEIEE-RRE
F1HABYILBRBIEEH

HHBDOJRNYND
ANCJUNN :
o.!(t!l
naang
(1%].(. v
HHNUANN
_ PR,)
TN A MM
BOVEYN
PR L L RS
A MMM
FAOOMNN B
MMM
HRHEANRJEN
pHnlLJian
I TN
INNLINN
TN
..m(t..o..s._
LR iRt R RLRD
A -
NCENENNN
AN
AHREND ,
NJANNC AN
AN HHIINM)
HMHRENEN
+H B
.

o,
.
QO
N
mw
QO
o o
ajd
O
e
O
e
O
&
O
e
T8
©
-
i
©
-
an
TI

=

IR BHANUEI

= IGECEEE R

sb-FrE-PE NICIERE ECICENNEEEEEEENIEICE

Back to the roots

Patterns in Property Specifications
for Finite-State Verification*

Matthew B. Dwyer
Kansas State University
Department of Computing
and Information Sciences
Manhattan, KS 66506-2302
+1 785 532 6350
dwyer@cis.ksu.edu

ABSTRACT

Model checkers and other finite-state verification tools
allow developers to detect certain kinds of errors au-
tomatically. Nevertheless, the transition of this tech-
nology from research to practice has been slow. While
there are a number of potential causes for reluctance to
adopt such formal methods, we believe that a primary
cause is that practitionérs are unfamiliar with specifi-
cation processes, notations, and strategies. In a recent
paper, we proposed a pattern-based approach to the
presentation, codification and reuse of property specifi-
cations for finite-state verification. Since then, we have
carried out a survey of available specifications, collect-
ing over 500 examples of property specifications. We
found that most are instances of our proposed patterns.
Furthermore, we have updated our pattern system to
accommodate new patterns and variations of existing
patterns encountered in this survey. This paper reports
the results of the survey and the current status of our
pattern system.

George S. Avrunin
University of Massachusetts
Department of Mathematics

and Statistics
Ambherst, MA 01003-4515

+1 413 545 4251
avrunin@math.umass.edu

James C. Corbett
University of Hawai‘i
Department of Information
and Computer Science
Honolulu, HI 96822

+1 808 956 6107
corbett@hawaii.edu

cess support for formal methods.

We believe that the recent availability of tool support
for finite-state verification provides an opportunity to
overcome some of these barriers. Finite-state verifica-
tion refers to a set of techniques for proving properties
of finite-state models of computer systems. Properties
are typically specified with temporal logics or regular
expressions, while systems are specified as finite-state
transition systems of some kind. Tool support is avail-
able for a variety of verification techniques including,
for example, techniques based on model checking [19],
bisimulation [4], language containment [14], flow anal-
ysis [10], and inequality necessary conditions [1]. In
contrast to mechanical theorem proving, which often
requires guidance by an expert, most finite-state verifi-
cation techniques can be fully automated, relieving the
user of the need to understand the inner workings of the
verification process. Finite-state verification techniques
are especially critical in the development of concurrent

e eorvds /e M “vl-\nstt\ - N An‘-nrm:rr:a‘-:n }\nl\ntr;t\i‘ mobna “'AG"‘

Back to the roots

o atterns in LNG2!
Temporal L9
(LTL)

X ‘ p X1cC y
Ca un¥@hiliar with specifi-
cat OCHIN®E, notations, and strategies. In a recent
paper, we proposed a pattern-based approach to the
presentation, codification and reuse of property specifi-
cations for finite-state verification. Since then, we have
carried out a survey of available specifications, collect-
ing over 500 examples of property specifications. We
found that most are instances of our proposed patterns.
Furthermore, we have updated our pattern system to
accommodate new patterns and variations of existing
patterns encountered in this survey. This paper reports
the results of the survey and the current status of our
pattern system.

ado

y Specifications
Verification*

James C. Corbett
University of Hawai‘i
Department of Information
and Computer Science
3-4515 Honolulu, HI 96822
251 +1 808 956 6107
s.edu corbett@hawaii.edu

runin
achusetts
ematics

pport for formal methods.

eve that the recent availability of tool support
ite-state verification provides an opportunity to
e some of these barriers. Finite-state verifica-
frs to a set of techniques for proving properties
of finite-state models of computer systems. Properties
are typically specified with temporal logics or regular
expressions, while systems are specified as finite-state
transition systems of some kind. Tool support is avail-
able for a variety of verification techniques including,
for example, techniques based on model checking [19],
bisimulation [4], language containment [14], flow anal-
ysis [10], and inequality necessary conditions [1]. In
contrast to mechanical theorem proving, which often
requires guidance by an expert, most finite-state verifi-
cation techniques can be fully automated, relieving the
user of the need to understand the inner workings of the
verification process. Finite-state verification techniques
are especially critical in the development of concurrent

e ormds e 29 “7‘\"\"’\ - N An‘-nm:rr:a‘-:n 1’\(\"\0‘?;1\" mﬂl’t\b "‘ﬂﬂ“‘ N

Back to the roots

y Specifications
Verification*

James C. Corbett
University of Hawai‘i
ent of Information

er Science
2

t

add : :
cé ; unf&iliar with
cal OCY®B, notations, and strategies.
paper, we proposed a pattern-based appré
presentation, codification and reuse of prope®
cations for finite-state verification. Since then, we h@ 7
carried out a survey of available specifications, collect- pal-

ing over 500 examples of property specifications. We In
: contrast’ to often

found that most are instances of our proposed patterns. : : :
requires guidatfce 1 erifi-

Furthermore, we have updated our pattern system to
accommodate new patterns and variations of existing
patterns encountered in this survey. This paper reports
the results of the survey and the current status of our
pattern system.

cation techniques caff*oe g the
user of the need to understai®™ ti gs of the
verification process. Finite-state vEeMnCa hniques
are especially critical in the development™® concurrent

e ormds e 29 “vl\n'ot\ - N An‘-nm:“:a+:n "\nl'\n‘r:l\r mobna #na# -

LTLf: LTL over finite traces

¢33:A\ﬂ¢|¢1/\¢2\0¢\¢1@f%@2

LTL interpreted over finite traces W
- -
In LTL, there is always a next moment... in LTLf, the contrary!

e ¢ always holds from current to the last instant

OSO The next step exists and at next step ¢ holds

‘90 — Q 1@ (weak next) If the next step exists, then at next step ¢ holds

Last = — () true last instant in the trace

LTLf: LTL over finite traces
[DeGiacomoVardi,|JCAI2013]

VRPN

.)>0O~>C

' No successor!
VA

e last instant

LTL interpreted over fini

In LTL, there is always a ne

¥ ¢
QSO The

Q@r=-"0 ¢ (we

Last = — () true last instant in the trace

step ¢ holds

t step exists, then at next step ¢ holds

Template formulae

at-least-one(a)

at-most-one(a)
responded-existence(a,b)
response(a,b)
precedence(a,b)

not-coexistence(a,b)

s
=101

negation-response(a,b)

? LTLf

Template formulae
A\
at-least-one(@) | a Qa
0.1
at-most-one(a) . —IQ(a A O(}a)

responded-existence(a,b) H (>a — <>b
response(a,b) EHE [1(a — O(}b)
precedence(a,b) (bW a)

not-coexistence(a,b) -0—“—0- —I(<>a A (}b)
negation-response(a,b) E‘—"—bm [](a — —|O<>b)

Semantics of Declare via LTLf

Each state contains

a single activity

Atomic propositions are activities O—VO—PO—PO—PO-PO

Each constraint is an LTL formula (built from template formulae)

delete a
order pPay
pick close
i1tem order

Semantics of Declare via LTLf

Each state contains

a single activity

Atomic propositions are activities O—PO—PO—PO—PO-PO

Each constraint is an LTL formula (built from template formulae)

Semantics of Declare via LTLf

Each state contains

a single activity

Atomic propositions are activities O—PO—PO—PO—PO-PO

A Declare specification is the conjunction of its constraint formulae

delete
order

[](close - {pay)
A[J(close - Oitem)

A [](cancel — —[]pay)

An unconventional use of logics!

From ...

Temporal logics for specifying (un)desired properties of
a dynamic system

.. 10 ...
Temporal logics for specifying the dynamic system itself

From Declare to automata

Thanks to finite traces: good old finite-state automata!

NFA DFA

nondeterministic | deterministic

Vision realised!

NFA

nondeterministic |

DFA

deterministic

A full Declare specification

A full Declare specmc

-

7y

Wb v n pop
S— g
e —— - = — Saw ol waivnd
o Srvew -
- Mortpas \ .
. p— e e S oo nd
- m— e h}-l‘w
el oA e e Be . w\,v
B Jiiie o e ———— B Fa
A= - DI e ¥
.' - B pyer "\‘0_& ——— = il ——— vy
°" ' gt o -# sl - - — '.-w !'lNl ! BAES ATy F - \
s }' Py FREAING Ik pam - | 7/ o N) \
¢ . ."'I'l';"' > e > S e VRS .'. ™ Smlov s vem '.}/ \
' . :— o o — - =3 -‘: Sha ‘ﬂ.lb_ -',. A - —— X -..J ,-‘--. & v ".'
Y 1 i — ry ',' — ™ -~ e \"
. --‘\ = e Srdcedabecmd S . Tl L e A Ao el NN by B Vd
S ———— f wd - - e o ’ \
-l"i \";:‘\\ B ’,. .\h.’ o Sawd ol \'~..__ '.'"'m - N "\.(I' \\
S papaT *,'“ ymaed o ron - [even pupe Ny (e P e % Y
s o ok e ...a‘-’ v T /;‘- -‘.._., am— e L L S “\ \
‘L's_-gun_ " e — | - " 238 dwns W 'f‘ ""‘I_‘L_; - abre oo "."N\,/ \ "-._
> il iS58 e : y ke e e —— - —ﬁ 8:- - S smluwh unl. - S R s o S "'_ \\ Y
s / S i SR L -~ L Y) N
p - . Ep— =~ L) L ™ - - — B \
. o _- / - - - - \"—s, . L 'm : INN"IJ_'V. 5 __\J-._-' - --/\-.._. - - I \, Brvew g
/ ™ ¥, '/ Pt \._‘ S -~ Coea - —— - ~ - 2 “t l‘\ra
7 o pg ,,-" s T -'\).I\ e .\ s 1 ow
g 1 d . o ’” AT R v o~ . i . R S B .~
v . g . > . - - 4. . 4
-". //‘ - .“:-:- ofbo - paw s o ,,‘ - :\'--- i T ~- %n‘:o".‘u..:-:‘w T ﬂ'g
'y " ; 2 ' ~ — A e At ey A
! o ¥ :fﬂ reymés " g " "‘. W & e , hp O il -— - W e n oowd
s /) o~ - — — — AP o ol Voslnismonaw -~ . e
' P 5‘.‘”s--ji-- --__#’.__ \p‘ '.*' \c-nocm-i — m"“:':‘~ e | ..M:’ e, ‘_-"w_._ \ Qba o B " h iy __--»'_..'.... N o
' ” J— 7 Paow poas —a |- L8 Wiks wx pyey i 4 o "—ea ayl "i" Ghre e — — - Ve A\
A s 7 el § Eou I i et i - T o> J -
n / S | il Sy e . T b i __,
' . P J o c' PR— - — _— - - - o~ of
.,'I f',-" o n‘....?h:’\- '/ - J’ mp \'-\ - el /"' . ,..‘ S . -~ - "-‘.\ & Q “ ot“u‘ﬂ-‘“‘s_ ~ ’ ,',." ra
f ™~ : iy 4 ~ al B ™ N o ~ - ’ ‘
..’ /' '.Y ’ -}j\/ S L LT . '-":“ i Y 4 B S0 ,.‘/-’ - - [i \'-\ l\z_ g g - -~ .’/'./
P - o — S— -. - swat g T . - R »
R N P T T L o , A ._\,1 —" A .vr, e VO ' \._ P ., o~ e 7
y f - Y ' s 7N\ L TR ———— e e— Wl e J g e \ f P, Sy o~ 9 4
. i - PEA T 7 N, Sewkvabncn e — gt N —— e -
_' .‘f'“ ". | B S // \.‘ .l.“ht‘ - o . - ;-'-- _:--‘ s O~ = L eaup pepe '){ - == ~ .'."- /
O - s’ L / S) e Snvn Tuntnprond " = ——— o e v e
.l‘ ,1‘ O S p— ’_/ .: ' /,c {f - ‘p - .\) “‘ ~ —— B m'- - __... .‘.‘.‘*‘. -:‘:.’_{:'q.:‘ - - - - mp / -' e — s pew o - e
“ane — B S LT - - - N ' o — -
-‘1{."/ e .i. /.” /%ﬂ el ik g oul' - d.._/. - _‘: Sdu s i s ‘J / \-" wlmdtnsusd e \.\ ' __."'
'{,-'.{_ e ‘! / Sude — "o v W M" m' Soonm Lo f .""_'_ o Py S e rad ‘c.vum _,"{
. . — o> . " k’ -— dt._ . W e o Lol A lrvws o vw -
et ey - A o - e
', Ny — f \»-‘ edinb el - '11" \loq»p ‘_& g " g%! ‘__" g
< P ’ —T - - - - "P. -~ e ol oy e -
- "_‘:‘. P \"-_ 3 . V'tl.o.a;\fw "" {(. > Ve Nk wewr }' —
L par ™ ol R e { ARy "".',‘""""“"‘ B -2 AP ot
: ; L e ~ =5
S iwo .~ - "M‘. N > 3 = P |
‘. o ,'.' .. S N\rc. . S b~ S.Oo.l.qcn. | R ‘r — "-_‘_- Rogex i
e e . St Kl | WA
- — Bl | —— -— - - g .
. 2 -~ LR ",‘ L e ”".-... ._3\ : \._. e - .
. gl s o 7, W el avires eeawed o o e ™
= — \’\ - - W et g \' | - .
—iE e g 7 f\ - T T -~ \
— f [l oAy A ,
. el N ‘.f' B - o * ERa, B — - N\
- - - B / ” Lem v Jd — - =~ e A N
o~ g e Sddie g - 25 g o lq-ar-fw e -. . - w2 gk)
- v .-‘_. E2n \9".’.‘: ‘o = .""-T —— SN =3 Y g { 3) . --"--. . wiee o mw
- . "-élo* - . e .l \ ~ Srasnpibl we Miaxi N Bl e ¥
> 4 . =) i I. '/ - ‘l-d-’l S .“ ;'l
o " e . P (-] . Yl "o red
————a, — . 7 \ - -— ._ b\ -~ "‘"(‘l’n e t
o~ g g > ' " N L e L S ¥ ’I ‘ d L r..o.;. ' '°' v J- - L b
rd e h - "N —— T" .' 2 .ﬁ ;
> / _ s et - X % LR | J (Vol RS S :.»' “
y ; Y A e Tt
rd S \ o oY \‘\J' ’ N el oy o i u_ i ol rwbomm el r
,/‘ §) - b 7™ 4 avelpagw Y l’tvp A 1 L 3
; S~ —_— v o~ \, / - N , - ;
; R . . - — e mtuanw -
J s A.J(-)ll. lu . v : N ety h .. N " . JJ s.. v dm 7 g Pt v o {
el P"" ™ _ vusadiage f' ‘{ - —“"’,- — -~ “,' "4‘ p— J - "-._ Mnorz\!" -~ 4
Y . “!. L~ / e . \ e .. S . . o4 - i 4
n.'.°“ - ’.‘J - ‘— A - Sy .’.' -.\\ .. o \ p e o -'- - LS -“ff.\ - -.-.:;. %{w | .-f ’l
\ - Smmma - ol - v.\ sderb sb s B AW R R T - N W Vg -'\‘_ e Y g J Eeary ‘«. \._- I LERRIE 5 J
> o Wl - LR - J f A Sl o) 4 ., L o L . 7| s e e /
4 \ 5 — e . - y) ,\ - /7 S / Y \ o
/ . °.\ e bl o .. 7:\-»-\ v, - . "\ e . rda o — = R L} ; ﬂ‘c.f.tn‘tt _.‘ g
s N \ e .~‘..’>.‘J,_‘..M,’-‘ . >do.'|ﬁ e 7 ., ’ou.pdnvu-ﬁv‘ “\ e y 4t e] i << *’ - Fd
¢ . " - b 00,‘0 e o \) SN a‘.h.'-‘.ﬁ."l \ B 4 Sewet ' - [ot .' TE /
4 N “ .. , § Yiries o e ek wewad \ _ et v o o.’
s o V. . . g “elovrevinivel 'ﬁ’ S 1 ~ ey \ "' % \ - Son -“‘rl-rﬁ‘ Wod ' g
: - Y e 7 P - ¥ - B \f . - e ¢)
Y [o e ‘? E_ . Nbedpyer >"‘- - S~ —— . SAubme — \‘x 9. -~ L
s ey e - l\. - --...- B Lt ’;f‘.\-" . e = .‘] \ i 3 | ‘-‘ J-.{--'
” .'\.‘ e . ot - e N e - S \ ’ iy e ,ﬁ\ o hrodnane
) " - - T - - - N - b - - . " o
.', o .. -..‘-'f- 0 o .. ."A -- Al l‘.“ .."\ -- .,'.\..\ \'.. .\.V‘ - £ :/'. "' .
! s SREA PN o= ste TPy, " e e \ e P i L)
/ ~ ro -5 st -, s(o R
/ " . L P, O - H
J e "~ S o~ e e e Depvemger g IOV ' ! ‘\,.
v o= Cer - - - o Cene .
s Lov i b vt -l B e, T B — S |
) P~ e — dalig — — Sp——
4 ("'"u“' e welinfimvrnine e . -
" 4 ' I" b - " B w8 e o -
wrlivrnaimiva - -
“ > -
3 _." Shimidansl _ ow,) - ks "(“ ‘“' e
i e e i
- (i SIS = N
% 2 —Laae =
- '\ ._\ ¢,_(.v'~.._
LR o -~ . Dean M
. ~ . e L
. -
\'\._ - Y LETTIS a \\\
- =) oy . NalanfFelparwe
,M‘ n/oro‘lo.vu‘ -
v.!~

sheriaam

f
ol Sl 0

.y‘k‘, vl

|
"

Vcnlquo
'n.--o'..-

~ l L)
f-Otac\r.r-

wowd
sl

)
1})
e

- -.o
c P

\"‘b .
}_uu:u.m_..
:'" e prer

Demensage
"W iy - .
pa

N _.-;.'~. -~
l P

'\.'."m
LW e ey owe ..' -
- Cene
N

- - =~ i
- - - '
=, NWenzrew roper
e - F e

Py e
b‘s J\-

.a...-u e
4 J

’

Nebegem o™

- -'-. “.

Fismamow aevr

- it
~.

' e e ’v'
!",i .E;."/Sadsa—'-dn wand

o\.QJaw

~ % .p-
,w

i
-
-

Constraint automata

Template: pre-compiled into a DFA

Constralnt grounds the template DFA on specific activities

> {c} Z\{p} ‘{d} 2\{p}

p:l.ck close close delete
:|.tem order order order

Combining constraints

Combining constraints

reS\a,b} gex 2R\
G S 45/\ TNE
2 5

Combining constraints

reS\a,b} gex 2R\
G S —»<<%/\ TNE
2 >

Combining constraints

re\ab) pey e\
—O— o —»&/\ v e 2\{c)
2 >

Combining constraints

responded existence(a,b) B response(a,c)

- Z\{a7b N ajezb\{a,b}
O T € Y\{a, b} b _ 2\{ }
—> X C
T € 2\{b, c} %}@ r € Y\{a}
d 5 Qj

x € YX\{c}

XL

From local automata to global automaton

Entire specification: product automaton of all local
automata

* Corresponds to the automaton of the conjunction of
all formulae

* Many optimisations available

Declare specification consistent if and only if its

Framework In action:
enactment and monitoring

The global automaton is an execution engine

delete
order
pick close
i1tem order

The global automaton is an execution engine

order 2\{c,d} . 2\ {d,p} .
C

[
1tem order "
' d

1 Z\{:I-ICIP}

2\{c,p}

DTN G
A -

2\{i,c,d}

The global automaton is an execution engine

1. History recognition
given the history of a running
Instance, compute the current

state (or reject)

The global automaton is an execution engine

2. Todo list

Given the current state, tell
which tasks can(not) be
executed next (also “stop”)

The global automaton is an execution engine

3. Step-by-step execution
Given the current state and an

executable task, move to the
next state

monitoring

Track a running process execution to check conformance with properties of
Interest

 Goal: Detect and report fine-grained feedback and deviations

 Complementary to predictive monitoring!

continuous feedback

OO0 Monitor

i
evolving trace

A,
M property

(Anticipatory) monitoring

Track a running process execution to check conformance with properties of
Interest

 Goal: Detect and report fine-grained feedback and deviations also
considering the possible future continuations

 Complementary to predictive monitoring!

¥ continuous feedback
IR QWO
e W '
LN A \Y onitor
: R .

evolving trace

AN
m property

Fine-grained feedback
As hard as satisfiability and validity!

Refined analysis of the “truth value” of a
property
* looking into (all) possible futures

Fine-grained feedback
As hard as satisfiability and validity!

Refined analysis of the “truth value” of a
property
* looking into (all) possible futures

A
v \ Consider a partial trace t, and an LTLf formula ¢...
3 \

isfied?
¢ satisfied"
R 4
AR . os*
» L |
S “v""'.
: g
. L |
Rt X o""--’. P
- ' isfied?
ll“"’q -0:‘-.’0 0‘-." 0‘-..‘ Satlsfled .
t Illlllll}: :I>: :'»: :'>
“a, Ll AR e oo *enat
A a .
" L]
. W,y - o
L o N
. []
’0._0'.'~A‘¢"0

*
a

RV-LTL(f) truth values

@ permanently satisfied by t O-;O-;O'}'
Il
 t satisfies @ ..

* no matter how t continues, @ stays satisfied

@ by 1
» t satisfies ¢
* there is a continuation of t that violates @

RV-LTL(f) truth values

@ permanently violated by t
* tviolates @
* no matter how t continues, @ stays violated

R 4
.¢‘ . IR N
b g
‘ .
* L
" "y ‘vc 4
'S (R) L |
s <
" . .
. V’
S % vt as® N
n ‘ .
|]
t .-"’ v un "
b) vps®e’ .“ 2 .“ :‘
N n
Illllll}‘ .f>‘ .F>- >
* [N *
-..‘:‘ %‘o.,o *ps® 9
| | . []
* ”, unw .
o ALY Rl :
N L 4
g v
. 4 u
‘' .Ao‘
n
.
%e

* there is a continuation of t that satisfies @

RV-LTL on finite traces

Suffixes of the current trace: each with
 RV-LTL truth values encoded as regular expressions -> all formulae of LTLf are monitorable

2\ {i,c}

pick
item

)
close close a delete a
order order Pay order Pay

RV-LTL on finite traces

Suffixes of the current trace: each with
 RV-LTL truth values encoded as regular expressions -> all formulae of LTLf are monitorable

Operationally: color each DFA state with an RV-LTL value via simple reachability checks

2\ {i,c}

O &)
pick close close a delete . "I a
item order order pay order pay

Monitor Iin action

pick close o
item order S
close
order
delete
order

ﬂﬂﬂ

Monitor Iin action

pick
item

close
order

delete
order

pick
1tem

close cs S
order P

Monitor Iin action

pick delete
l1tem order

pick close

item order
close

order

delete

_erder an CS

Monitor Iin action

pick delete close
i1tem order order

pick close

item order S PS

close

order pPay CS cV
delete

_Brder P2y CS

Monitor Iin action

pick delete close pay
1tem order order

pick close
item order €S PS
III!HIII ‘IIHgIIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIIIII[:EE
ay pV

close

order

delete
order

-

Monitor Iin action

pick delete close pay
i1tem order order

pick close

item order S PS

close

delete a
order Y

Quiz: is this the earliest instant

for detecting a violation?

Monitor Iin action

pick delete close pay
i1tem order order

Iliiiﬁll Iﬁiiiil I'......

Ltem order To satisfy: pay
close
order
delete
order

pay CS

pay

To keep satisfied: don’t pay

Monitor Iin action

pick
item
close

order

delete
order

close
order

global monitor

pick delete close pay
1tem order order

cS DS

CS

CS

PV

PV

S\ {c,d} ‘ 2\{d,p}
C
100 110
[ps,cs,cs] [ps,cv,cs]
P

Z\{i,c,p} d >\ {c,p} d

*\{i,c,d 000 001 - 101 111

- 200 002 1 102 112 5

with two proviso:

Global monitor

2\ {i,c}
Z\{c}
e recall RV-LTL c p c
labels of local 515
- 210 211] 2\{p}
constraints x\(p,q) [oV,CV,Cs] [ov.cV,cs] [pv,cv,pv

* no Mminimisation '
nor trimming 2\ {p}

(distinction of
violation states)

2\{c}

202
[pv,cs,pv]

S\ {c,d) ‘ 2\{d,p}

Global monitor [e (RETIY I /nticipatory
|
d detection

Cross-product =x\(c,d) ‘
with two proviso:

e recall RV-LTL
labels of local

constraints x\(p,d} ‘

* no minimisation
nor trimming
(distinction of
violation states)

S\ {c,d} ‘ 2\{d p}

100 110 Anticipatory
M — pe.cves) violation

Z\{1 c,p} N\d =\{c,p} detection

S\{i c.d 000 001 101 c 111
- 200 002 1 102 112 5
Cross-product =x\(c, d} ‘ - [0S,CVv. pV] . \{p}
with two proviso:

Z\{i,c}
Z\{c}
e recall RV-LTL . c

labels of local - 1 . o)
constraints x\(p,q) ‘ oveov.cs] [pV,cV,pv] g
* NOo Minimisation
202
[pv,cs,pV]

Global monitor

nor trimming < s z\{p}
(distinction of constraint weights and

violation states)

2\{c}

recommendations

Can we do more?

Finite-state
automata

Can we do more?

MSOL over Regular Finite-state
finite traces expressions automata

Can we do more?

LDLf MSOL over Regular Finite-state

inear dynamic logic @ finjte traces expressions automata
over finite traces

Can we do more?
| ,BPM2014] | , TOSEM2022]

LDLf MSOL over Regular Finite-state
inear dynamic logic @ finjte traces expressions automata

over finite traces

Can we do more?
| ,BPM2014] | , TOSEM2022]

LDLf MSOL over Regular Finite-state
inear dynamic logic [£ races expresshmgs automata

over finitedtraces

Can we do more?
| ,BPM2014] | , TOSEM2022]

LDLf MSOL over Regular Finite-state
linear dynamic logic | _£ @B iCes expresshmgs automata

over finitedtraces

From constraints to metaconstraints

LDLf expresses RV-LTLf monitoring states of LDLf constraints

* Support for metaconstraints predicating over the monitoring
status of other constraints

Example: a form of “contrary-to-duty” process constraint

* If constraint C1 gets permanently violated, eventually
a compensation constraint C2

Interesting open problem: relationship with normative
frameworks and defeasible reasoning

Tooling

Fully implemented as part
of the RuM toolkit
(rulemining.org)

<>pay -> <>acc
1

temp.sat temp.viol

!(<>get \ <>cancel)
1

temp.sat

Contextual absence: get task forbidden while <>pay -> <>acc is possibly violated
1

temp.sat

Reactive compensation: permanent violation of !(<>get \ <>cancel) compensated by a consequent <>return
1

temp.sat temp.viol

Conflict: presence of a conflict for !{(<>get A <>cancel) and [J(pay -> O<>get)
1

temp.viol temp.sat

Preference: preference of !(<>get A <>cancel) over [|(pay -> O<>get) in case a conflict is ever encountered
1

e
e
e

temp.sat

666:65-65-00 0261/L0/L0 HE)S]
1¥1:80:¥L:¥L 6L0Z/€Z/80 uibaq
1¥1:6G:91:¥1 6L0Z/£2/80 Aed
L¥L:21:61-GL 6L0Z/E€Z/80 22e]
L¥1-9%-€G6:91 6L04/€Z/80 [22UBD
1¥1:81:¥G:9L 6L0Z/£2/80 12D
L¥1-8G:91-21 6L0Z/€Z/80 UImal
I¥L:G-ZZ 1) 6L0Z/E2/80 3|dwiod

http://rulemining.org

From global monitor to enactment

1. Compute the global, colored DFA A

2. s = Initial state of A

3. Loop
A. Block all tasks that would lead to a permanent violation if executed in s
B. Highlight constraints that are permanently satisfied in s

C. Highlight constraints that are
If no currently violated constraint: allow for completing the process

D. Use picks an enabled task a and executes it
E. Fetch s’ s.t. <s,a,s’> belongs to A
F. s=¢8’

confirm hi
shi
order P

finalize
order

reject n?tify
order sh}pment
1ssue

Example

Initial state

finalize
order
notify
' shipment
l1ssue
U you can stop!

Example

“finalize order”

reject n?tlfy
order sh}pment
i1ssue

Example

“notify shipment issue”

reject n?tlfy
order sh}pment
1ssue

Example

“reject order”

reject n?tlfy
order sh}pment
i1ssue

w you can stop!

| USFS

BLM

| State

Private

i

!

|

YELLOWSTONE
NATIONAL
PARK

Targhee
N.F.

OHV Q]

SNIWOAM

AN L Bridger

Fitzpatrick -

(Wilderness

Shoshone

N.F.

Declarative process discovery
Simply stated...

Process discovery aiming at extracting
a declarative specification from a log

In our case: Declare

Declarative process discovery

Two settings Specification that
- covers all green traces

and rejects all red ones

Discriminative mining 3% Partition

Specification that
covers well all traces In
the log

Specification mining
log

&
i

All possible constraints grounded on
the activities In the log

All possible constraints grounded on
the activities In the log

General idea

1. Define suitable to capture the meaning of covering
well -> Iinteresting satisfaction
e Starting point: and from data mining

* |ssues: not enough, not easy to import (see next slides)

2. Approach
. for interestingness

* femporal reasoning for logical correctness and for
computing the inputs of metrics

Naive support is not enough

| | # traces that satisfy the constraint
Constraint support (naive) = —m™ X — — X X 8 —4—0898¥ —

total # traces in the log

Issue: consider response(a,b)
e <a,c,b,a>

e <c,d,e,c,d,e,f>

e <b,c,d,e>

e <a,b>

e <3,a,b,a,b,a,b,a,a,a,b>

Naive support is not enough

| | # traces that satisfy the constraint
Constraint support (naive) = —m™ X — — X X 8 —4—0898¥ —

total # traces in the log

Issue: consider response(a,b)
e <a,c,b,a>
. <c,d.e.c.def> 1. Account for vacuous

. <bcdes satisfaction
. <abs #

e <a,a,b,a,b,ab,a,a,ab>
Support: 4/5 (not informative)

Need to:

2. Distinguish satisfying traces
pbased on interestingness

3. Define event-based measures

In search of a normal form

[[y — @)

In search of a normal form

[[y — @)

Activation Target
every time it happens, LTLf formula capturing the

triggers an expectation on expectation
the target

In search of a normal form

H Upon activation, determines
satisfaction or violation

Activation Target

every time it happens, LTLf formula capturing the
triggers an expectation on expectation
the target

The more occurrences of the
event In the trace, the more
Interesting the constraint is

Non-vacuous Iif activated at
least once by the trace

Redefining templates...

(exploiting past-tense operators)

activation

—

target

4=

{

N N N N N N

4=

Redefining templates...
(exploiting past-tense operators) activation target Z
Oa ﬂ [1(Start —)
-)
-)
-)
-)
-)
-)

4=

{

Redefining templates... &’*

(exploiting past-tense operators)

activation target

Oa ﬁ [1(Start —

—

—

—

N N N N N N

- ~o0mmp Oa -

Trace-based support, refined

I—

4

-I

| # traces that satisfy the constraint and activate it
Constraint support (trace-based) =z —o0o0o0o—-——+

total # traces in the log

Response(a,b)

* <3a,Cc,b,a>

e <c,d,e,c,d,e,f>

e <b,c,d,e>

e <a,c,d,b>

* <a,4,Cc,b,a,b,a,d,b,a,a,c,a,b>

Trace-based support, refined

I—

4

-I

| # traces that satisfy the constraint and activate it
Constraint support (trace-based) =z —o0o0o0o—-——+

total # traces in the log

Response(a,b)

e <a,c,d,b>
e <a,a,c,b,a,b,a,d,b,a,a,c,ab>
Support: from 4/5 to 2/5 (informative, but not reflecting what happens within a trace)

Event-based support

events that satisfy the constraint activation and its target

Constraint support (event-based) =

total # events in the log
Response(a,b)
e <a,c,b,a>
e <c,d,e,c,d,e,f>
e <b,c,d,e>
e <a,c,d,b>

e <a,a,c,b,a,b,a,d,b,a,a,c,a,b>

Event-based support

events that satisfy the constraint activation and its target

Constraint support (event-based) =

total # events in the log

Response(a,b)

. o)

d>

<a,c,b,
e <c,d,e,c,d,e,>
e <b,cC,d,

e>

/’"N

e <a,c,d,b>

@ /\'@

e <a,a,c,b,a,b,a,d,b,a,a,c,a,b>
Support: 9/3 3 (informative, but not reflecting trace satisfaction/violation)

Trace- and event-based confidence

Activation and target: solid basis to import the notion of confidence from
association rule mining

traces that satisfy the constraint and activate it

Constraint confidence (trace-based) =

traces that activate the constraint

events that satisfy the constraint activation and its target

Constraint confidence (event-based) = . _ —
events that satisty the constraint activation

Finally, discovery

1. of Interest

2. for corresponding constraints (grounded on log
activities)

3. Filter based on minimum thresholds

4. Redundant constraints?
 Keep the most liberal if metrics are better for it
 Keep the most restrictive in case of equal metrics

5. Incompatible constraints? automata

* Keep only the one with better metrics

6. Further processing to ensure consistency, minimality, ...

Tool support

MINERful

(command-line)

https://svn.win.tue.nl/repos/prom/Packages/DeclareMiner/ https://github.com/cdc08x/MINERful

claudio@lic18-02: ~/Code/MINERIuUl

¢ Eadit View Search Termiral Help
INFO [main] ninerful.NinerfulhinersStarter (Info:l141) - Loading loq..

Unknown exlension: hilp: //wws. xes-siandard.org/me=ls org.xesexl
Unknown extension: http:/; -standard.org/meta time. xesext
Unknown extension: http: w.xes-standard.org/meta_3TU.xesext
Unknown extension: http:)/ X standard.arg/reta_lite.xosoxt
Unknown extenst http: ¥es-standard.o veta_concept, xesext
Unknown extension: NLLp: /S /wma.xes-standard,org/meta general, xesext
— — INFO Tmein] core . MinerlulkBCore (discover:14) -
O X Conputing occurrences/distances table...
R R R R R R R R N AN R RN R RN RN RN N RN

| |
. T rain] care.MinerFulKE ¢ (discover:61) Done |
DISCOVGI'y m INFO [main] core.MinerFuLKBCL (printCorputationStats:13l)
Iinings' sumnary:
'Operation code for KB construction';'Job nunmber’; 'Nunber of traces';'Min svents per trace'; Max even race';'Avg events per trace
read’; 'Alphabet stize'; atistics computatian time'

Discovery method m Visualization 4 s Ve Sel a5 'M.KB':8:158376;2:20; : 4 1R 356146911 ;4486
NFO [4498

ain] ninerful . NinerfFulMinersStarter (infoi141) - Total K8 construction time:

generated from sample s *

e Ninerfulgueryingc (d overil12?) Discovering existencte constraints..
Templates . Y vain] core.Minerfuldueryingc over:lars) Discovering relation consbrainls...
s [main] core.MinerFulueryingCore (discover:179) - Done!
Show: swee boehs @ Bl Support - ol ot @K O [main] care.MinerFulueryingCore (printCanputationStats:323)

Tinings' summnary:
'Operation <ode lor 3 'Job nueber ' "Number of nspecled actlivilies';'Total guerying Line'; 'Constrain discovery Line';'Relatli
on constraints d - ; Exislence consbtraints discovery Ltime'; "Maxinum memory usage';'lotal nunber of d overable constraints’;
Tatal nurber of disco Le existence constraints';'Total nunber of discoverable relation constraints’; 'Total nurber of discovered const
raints ahove thresholds':'Total nunher of discovered existence canstraints abave threzholds';'Total nunher of discovered relation constra
¢ thresholds':
352 ;1584;44;15460;115;
niner ful.Ninerfulhinerstarter (U 11) lotal KO guerying Line: 29
fmain] core. Minerfulfueryinglore (nasss straints:58) - Post pressing Lhe discovered nodel. ..
[main] care.MinerFulQueryingCore (nar sBelowThreshold=:78) - Pruning constraints below thresholds...
pruning.ThrezholdaMarker (printComputatianStata

2d pruning:
i code';"Inpul consbrainls'; "Marked conslraints’; " Tine
;158414942
[main] care.MinerFulueryingCore (narkRedundancyBySubsunptionHierar :124) - Pruning redundancy, on the basis of hierarchy subsunpt

e LT
10C

[main] l.'lfng."'.f'1‘u_'. {infar131)

subsurplion-hierarchy-based pruning:
code';"Input constraints'; 'Narked constraints'; Tine

vy
-
-

Nols

3 Jdd penally,
CobExisten

c

[

s(ndd penalty,

NotSuc ion(Add penalty, sert Fine Notificatian)
NotSucc ton(Add penalty, Send Fine)
alternatePrecedenc eate Fine, Add penalty)

alternatePrecedence(Send Fine, Add penalty)

T\

..

N S W
. n

.
=
-
s
-

o

T ™

-
>
-

~

=

<o

O

e
-e

9 exciting
research lines

&g Ho

4..-$..-d

-
- t-.
’ -’.-
-l - g
,.—v,.‘...o'Oo -

- -

- ?“"b\‘:’ro /‘: . -

Probabilistic LTLf and applications

scenario

consistent? probability

011

refuse

-

=<
=
-

110

1 N 0 Close Close Close
and and and get a
refuse accept decision

change

et

2. Dealing with data

Monitoring/enactment with numerical data variables

LTLf over numerical variables with arithmetic conditions
* Undecidability around the corner

ldentification of decidable fragments tuning condition
language and/or variable interaction

* Semantic notion of finite summary, vielding decidability

* Concrete instantiations reproduce and generalise known
classes

Lifting of automata-based techniques using SMT reasoners to
deal with conditions

Monitoring/enactment with numerical data variables
[,AAAI2022] [,AAAI2023]

LTLf over numerical variables with arithmetic conditions
* Undecidability around the corner

|dentification of das
language and/or ¥

e Semantic notion

e Concrete instanti®
classes

INg condition

ding decidability
generalise known

Lifting of automata g SMT reasoners to

deal with conditions

Monitoring/enactment with numerical data variables
[022] [,AAAI2023]

LT

ariables with arithmetic conditions
e corner

INg condition

Also
classes C ~ Nicola Gigante

Lifting of automata on related topics
deal with conditions (Wed 9:00am)

3. Dealing with multiple objects

Processes are not flat

contains

carried
in

Package

timestamp

overall log

2019-09-22 10:00:00

create order o;

2019-09-22 10:01:00

add item to order oq

2019-09-23 09:20:00

create order 09

2019-09-23 09:34:00

add item 75 ;1 to order o9

2019-09-23 11:33:00

create order o3

2019-09-23 11:40:00

add item 23,1 to order o3

2019-09-23 12:27:00

pay order o3

2019-09-23 12:32:00

add item 7; 5 to order o

2019-09-23 13:03:00

pay order o7

2019-09-23 14:34:00

load item into package

2019-09-23 14:45:00

add item 12 > to order o2

2019-09-23 14:51:00

load item 73 1 into package

2019-09-23 15:12:00

add item 72 3 to order o2

2019-09-23 15:41:00

pay order oo

2019-09-23 16:23:00

load item 75 1 Into package

2019-09-23 16:29:00

load item 71 o into package

2019-09-23 16:33:00

load item 5 o Into package

2019-09-23 17:01:00

send package

2019-09-24 06:38:00

send package

2019-09-24 07:33:00

load item 79 3 into package p3

2019-09-24 08:46:00

send package p3

2019-09-24 16:21:00

deliver package

2019-09-24 17:32:00

deliver package

2019-09-24 18:52:00

deliver package p3

2019-09-24 18:57:00

accept delivery ps

2019-09-25 08:30:00

deliver package

2019-09-25 08:32:00

accept delivery

2019-09-25 09:55:00

deliver package

2019-09-25 17:11:00

deliver package

2019-09-25 17:12:00

accept delivery

Processes are not flat

event log for orders

. overall log order o order oo order o3
= 09-22 10:00:00 | create order o; create order
2019-09-22 10:01:00 | add item to order o7 add item
2019-09-23 09:20:00 create order o9 create order
2019-09-23 09:34:00 | add item to order o9 add item
‘ 2019-09-23 11:33:00 | create order o3 create order
2019-09-23 11:40:00 | add item 23,1 to order o3 add item
2019-09-23 12:27:00 | pay order o3 pay order
2019-09-23 12:32:00 | add item to order o7 add item
2019-09-23 13:03:00 | pay order o pay order
2019-09-23 14:34:00 | load item into package load item
2019-09-23 14:45:00 | add item 22 > to order o2 add item
2019-09-23 14:51:00 | load item i3 1 into package load item
2019-09-23 15:12:00 | add item 72 3 to order o2 add item
2019-09-23 15:41:00 | pay order o2 pay order
2019-09-23 16:23:00 | load item into package load item
2019-09-23 16:29:00 | load item into package load item
2019-09-23 16:33:00 | load item 5 o into package load item
2019-09-23 17:01:00 | send package send package send package
2019-09-24 06:38:00 | send package send package send package
hLO-09-24 07:33:00 | load item 72 3 into package p3 load item
N0-24 08:46:00 | send package p3 send package
L 16:21:00 | deliver package deliver package deliver package
R.32:00 | deliver package deliver package deliver package
00 | deliver package ps deliver package
accept delivery ps accept delivery
aliver package deliver package deliver package
delivery accept delivery accept delivery
ackage deliver package deliver package
& deliver package deliver package
accept delivery accept delivery

Processes are not flat

2 overall log order o

9-09-22 10:00:00 | create order create order
2019-09-22 10:01:00 | add item to order add item
2019-09-23 09:20:00 | create order oo
2019-09-23 09:34:00 | add item to order oo
2019-09-23 11:33:00 | create order o3
2019-09-23 11:40:00 | add item 23,1 to order o3
2019-09-23 12:27:00 | pay order o3
2019-09-23 12:32:00 | add item to order add item
2019-09-23 13:03:00 | pay order pay order
2019-09-23 14:34:00 | load item into package load item
2019-09-23 14:45:00 | add item to order oo
2019-09-23 14:51:00 | load item i3 1 into package
2019-09-23 15:12:00 | add item 22 3 to order o2
2019-09-23 15:41:00 | pay order o2
2019-09-23 16:23:00 | load item into package
2019-09-23 16:29:00 | load item into package load item
2019-09-23 16:33:00 | load item into package

2019-09-23 17:01:00

send package

send package

2019-09-24 06:38:00

send package

send package

A 9-09-24 07:33:00

load item 79 3 into package

N0-24 08:46:00

send package

L 16:21:00

deliver package

deliver package

K.32:00

deliver package

deliver package

00

deliver package

accept delivery

aliver package

deliver package

delivery

accept delivery

ackage

deliver package

R C

deliver package

accept delivery

event log for orders

order oo

create order

order o3

add item
create order
add item
pay order
add item
load item
add item
pay order
load item
load item

send package

send package

load item

send package

deliver package

deliver package

deliver package

accept delivery

deliver package

accept delivery

deliver package

deliver package

accept delivery

3

create order

(3)

3

add item 0
(9]

3

pay order

(3)

3

load item

(6) 0
4)
send package

(5)

3

deliver package

(11)

5
2

accept delivery

()

3

Object-centric behavioral constraints

(FO-)LTLf constraints co-referring through objects and relations
* Models: temporal knowledge graphs

 Undecidability around the corner, decidable for Declare+ALCQlI

Challenge in balancing “open” vs “closed” semantics

register mark as determine
data eligible winner P
0,"
] ’

!
. i
L
i . 1 ! ! I
IS about 1 ! 1 \‘ 'l I . closes | e
: ! L L
; v/ i i[eest] i [eance
erson : b ! an
E creates \ / promotes : offer o hiring
. \] ' . ! I
- ! ‘\ l' ! 1 1\\\ ! : ,'/
/\ : creates 'y ¢ Slops

Ty 11 : : 1, 1: e
Candidate | : . | Application ! Job Offer

Application | Job Offer _

4. Multi-party declarative processes

Collaborative Declare

/constraints distributed to controller and
* From enactment to assume-guarantee realizability/synthesis

register pay
address order

ship
order

Collaborative Declare

Tasks/constraints distributed to controller and environment
* From enactment to assume-guarantee realizability/synthesis

Collaborative Declare

Tasks/constraints distributed to controller and environment
* From enactment to assume-guarantee realizability/synthesis

Realizability in single-ExpTime pay
o DeCIare yle|dS address order

poly-size pastification

* Linear encoding into
symbolic DFAs

ship
order

Collaborative Declare

ar and environment
realizability/synthesis

1
order

Tasks/constraints distributed.t@gC
* From enactment

see LUCa

Realizablility in singl®

* Declare yields
poly-size pastifice

* Linear encoding |
symbolic DFAs

5. Measuring flexibility

How flexible?

ool

How flexible?

ool

infinitely many traces...

... actually all! ()

flexibility = 1

How flexible?

ool

infinitely many traces... - = only one trace...

... actually all! (X%) ...do “a” and then do “b”

flexibility =1 3 . flexibility = 0

How flexible?

ool

infinitely many traces...

... actually all! ()

flexibility = 1

= infinitely many traces

= ...finishing with “a”

0 < flexibility < 1

= only one trace...

...do “a” and then do “b”

flexibility = 0

Flexibility as “density of traces”

Given a task alphabet X and a regular language Z over X...

flex(&) =

Flexibility as “density of traces”

Given a task alphabet X and a regular language Z over X...

number of traces of length up to n

accepted by &

W (<)

flex(&) =

Flexibility as “density of traces”

Given a task alphabet X and a regular language Z over X...

number of traces of length up to n

accepted by &

W (<)
Wgn(Z*)

maximally flexible behavior

flex(&) =

Flexibility as “density of traces”

Given a task alphabet X and a regular language Z over X...

number of traces of length up to n

accepted by &

W (<)
— 00 Wgn(Z*)

maximally flexible behavior

flex(£) = lim,

Flexibility as “density of traces”

Given a task alphabet X and a regular language Z over X...

number of traces of length up to n

accepted by &

W (<)
— 00 Wgn(Z*)

maximally flexible behavior

flex(£) = lim,

For Declare constraints and their boolean combinations:

the limit always exists

When the limit exists: computable using techniques based on topological entropy of DFAS!

dn buiddeapn

Conclusions

Managing and mining IS an open challenge
Declarative specifications tackle flexibility by design

based on LTLf

Automata at the core of all analysis and support tasks
(no ad-hoc algorithms!)

Fascinating research synergically combining and
jointly advancing Al and information systems

Thanks to Wil van der Aalst, Anti Alman, Alessandro Artale, Federico Chesani,
Giuseppe De Giacomo, Riccardo De Masellis, Claudio Di Ciccio, Marlon Dumas, Dirk
Fahland, Paolo Felli, Alessandro Gianola, Alisa Kovtunova, Fabrizio Maggi, Andrea
Marrella, Paola Mello, Jan Mendling, Fabio Patrizi, Rafael Penaloza, Maja Pesic,
Andrey Rivkin, Michael Westergaard, Sarah Winkler

mailto:montali@inf.unibz.it

Challenging Declare

Frequencies and uncertainty

* Best practices: constraints that must hold in the majority, but not
necessarily all, cases.

90% of the orders are shipped via truck.

* Outlier behaviors: constraints that only apply to very few, but still
conforming, cases.

Only 1% of the orders are canceled after being paid.

. . contain uncontrollable
activities for which only partial guarantees can be given.

In 8 cases out of 10, the customer accepts the order and also pays for It.

Declare Is crisp

accept
1..1

close
order
refuse

Crisp semantics: an execution trace conforms to the
model If it satisfies every constraint in the model

ProbDeclare

Crisp and uncertain constraints

ProbDeclare
Crisp and uncertain constraints | ,BPM2020] [,INnfSys2022]

ProbDeclare constraint over 2.:

triple (¢, X, p)

{0.9}
process condition: LTLf formula over 2

probability operator: { =, #,<,>,<,> }

probability reference value: number in [0,1]

Well-behaved fragment of full probabilistic LTLf | ,AAAI2020]

ProbDeclare

Crisp and uncertain constraints

ProbDeclare

Crisp and uncertain constraints

Crisp!

Each trace in the log
contains exactly one
close order

ProbDeclare
Crisp and uncertain constraints | ,BPM2020] [,INnfSys2022]

Uncertain!

90% traces are so that
an order Is not accepted
and refused.

ProbDeclare
Crisp and uncertain constraints | ,BPM2020] [,INnfSys2022]

Uncertain!

90% traces are so that
an order Is not accepted
and refused.

In 10% traces the seller
changes their mind

From traces to stochastic languages and logs

A stochastic language over 2 is a function
p . 2* — |0,1] such that Z p(r) =1
TEL™
* finite If finitely many traces get a non-zero probability

A log can be seen as a finite stochastic language
(probabilities from frequencies)

Semantics of ProbDeclare

Stochastic language p satisfies ProbDeclare model if:

«for every crisp constraint ¢ and every trace T € 2™ with
non-zero probability, we have that 7 F ¢

«for every probabilistic constraint (@, X, p), we have

Z p(r) X p

TEX™,TF @

Semantics of ProbDeclare

Stochastic language p satisfies ProbDeclare model if:

«for every crisp constraint ¢ and every trace T € 2™ with
non-zero probability, we have that 7 F ¢

«for every probabilistic constraint (@, X, p), we have

Z p(r) X p

TEX™,TF @

Key challenge: again, interplay of constraints

Dealing with “n” probabilistic constraints

Constraint scenario

Declares which probabilistic constraints must hold, and which
are violated

* Constraint violated <-> its negated version holds .

Denotes a “process variant”

e Allin all: up to 2"
scenarios, denoting
different variants

A a4 aao0oolo o
— O =20 =+ O = 0

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

close 0 o)
order

refuse

There cannot be traces that satisfy all

- O =+~ O =+ O = 0

constraints at once

Interplay between logic and probabilities

{0.9}

refuse

There cannot be traces that satisfy all

close ‘\0 2
order

constraints at once

Reasoning over scenarios is tricky

8 scenarios

— =210 0 0O 0

— OO0 = =<0 0
O =L O =0 =0

iInconsistent
-> no satisfying trace
-> 0 probability!

Logical reasoning within scenarios

LTLf and automata to the rescue

A scenario maps to an LTLf characteristic formula
e Conjunction of formulae, one per constraint...

e Does the constraint hold in the scenario?

Y ->take its LTLf process condition
I\ -> take its negation

(I)(Sé\fbn) — /\ w /\ /\

Reasoning via automata, as for standard LTLf

In our example...

Which scenarios are consistent?

D

2

©

O(close A ~O<acc

O(close A =OCref)

Oace N Orefuse

O(close A =OCref)

—(Cacc A Orefuse)

O(close A =O<acc

close — O ref)

Cace N Orefuse

)
& (close A =O<acc)
)
)

close — O ref)

—(<Cacc A Orefuse)

close — O<acc

O(close A =OCref)

Cace N Orefuse

close — O<acc

O(close A O ref)

—(<Cacc A Orefuse)

close — O ref)

Oace N Orefuse

(
(
(
O (close A ~O<acc
(
(
(
(

)
)
close — O<acc)
)

close — O<acc

(
(
(
(
(
(
(
(

close — O ref)

—(<Cacc A Orefuse)

CONSISTENT
11O

yes

110

yes

no

yes

yes

no

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

close 0 o)
order

refuse

0.8+0.3 > 1
-> there must be traces where a closed

4 alooO0|=x a0 O
1 O 2 0204400

order Is accepted and refused.

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

there must be

close 5\0 % traces where
order accept and refuse
coexist

0.8+0.3 > 1
-> there must be traces where a closed

A a0l 40l
A OO0 2al0

order Is accepted and refused.

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

there must be

close 5\0 % traces where
order accept and refuse
coexist

0.8+0.3 > 1
-> there must be traces where a closed

— OO = =<0 0

— 1O | =<0 =20 |= 0

Should have a
non-zero probability

order Is accepted and refused.

(if constraint values agree)

The true meaning of a ProbDeclare model

From probabilistic constraints to scenario probability distributions

With n scenarios: x; with 1 € {0,.. .,2"~11 denotes the probability that a trace
belongs to scenario 1

ProbDeclare model: constrains the legal probabillity distributions over scenarios

2" —1
5
1=0

(Z %)ijj 0< 71 <n

i€{0,...,2" —1},
7th position of 7 is 1

0 0 <1 < 2", scenario S; is inconsistent

)

The true meaning of a ProbDeclare model

From probabilistic constraints to scenario probability distributions

With n scenarios: x; with 1 € {0,.. .,2"~11 denotes the probability that a trace
belongs to scenario 1

ProbDeclare model: constrains the legal probability distributions over scenarios

zi 2 U U= <2 One solution
on _q -> a fixed probability distribution
(ZZ:; (Possibly infinitely) many solutions
-> family of probability distributions
(Z $Z> >, p; 0<j3<n
ie{0,..,2n—1}, No solution
Jth position of is 1 -> inconsistent specification

x; =0 0 <1 < 2", scenario S; is inconsistent

Computing probability distributions

1. check for consistency

close ‘\0 8“
order

accept

{0.9}

refuse

scenario

consistent? probability

— O = 0O =0 =0

Computing probability distributions

1. check for consistency

scenario

consistent? probability

N
Y
N
Y
N
Y
Y
N

accept
close ‘\0 8“ (0.9}
order '

— O = 0O =0 =0

Computing probability distributions

1. check for consistency

scenario

consistent? probability

O 0 O

O 01 Y

0 1 0 N 0

0 1 1 Y

1 0 0 N 0
110 Y

1.1 1 N 0

Computing probability distributions

2. set up system of inequalities

scenario
consistent? probability

O 0 O

O 01 Y

0 1 0 N 0

0 1 1 Y

1 0 O N 0
110 Y

1.1 1 N 0

ool T+ Toi1 + Ti01 T T110

o

101 + 2110 = 0.8

011 119 = 0.3

Toor + Toi1r + Tio1 = 09

Computing probability distributions

3. solve _
scenario
consistent? probability
O 0O
O 0 1 Y 0
0 1 0 N 0
O 1 1 Y 0.2
1 0 O N 0
11110 Y 0.1
1 1 1 N 0
Toor + Zo11 + X101 + X110 = 1
101 + X110 = 0.8
L0o11 L110 = 0.3

Toor + Toi1r + Tio1 = 09

Computing probability distributions

3. solve

close
order

{0- 3‘3

accept

@ (3)=={0.9}

refuse

L001

L001

+ To11

L011

+ To11

+ T101

L101

+ T101

I
|

scenario

consistent? probability

0 0 O

0O 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 1 0 Y 0.1
1.1 1 N 0

L110
L110

L110

Computing probability distributions

3. solve

refuse

Scenario 110

Close and Close and Close and get
refuse accept a decision
change

Scenarios in action

Conformance checking

<close order>

Close scenario
accept consistent? probability

O 0 O N 0
O 0 1 Y 0
refuse
order 0 1 1 Y 0.2
1 0 O N 0

011

110 Y 0.1 110

accept refuse 1.1 1 N 0 Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Conformance checking

<close order>

close accept
order

scenario

consistent? probability
O 0 O N 0
O 0 1 Y 0
refuse
order 0 1 1 Y 0.2
1 0 0 N 0

011

1 0 Y 0.1 110
accept refuse 1 N 0
Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Conformance checking

<close order, accept, refuse>

Close scenario
accept consistent? probability

O 0 O N 0
O 0 1 Y 0
refuse
order 0 1 1 Y 0.2
1 0 O N 0

011

o

<
o
-

110

Z
O |

1 1

Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Conformance checking

<close order, accept, refuse>

close accept
order

scenario

consistent? probability
O 0 O N 0
O 0 1 Y 0
refuse
order 0 1 1 Y 0.2
1 0 0 N 0

011

1 0 Y 0.1 110
accept refuse 1 N 0
Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Probabilistic monitoring

* One global monitor per scenario

 Monitors used in parallel: if multiple return the same verdict, aggregate their
probability

* |nteresting vs posterior reading of probabillities

Scenarios in action

Probabilistic monitoring

e One global monitor per Human interpretability is an

Interesting open challenge

 Monitors used in paraliel

rdict, aggregate their
probability

* |nteresting vs posterior reading of probabilities

From traces to logs

Stochastic conformance (granularity: scenario)

ProbDeclare

specification

From traces to logs

Stochastic conformance (granularity: scenario)

Consistent scenarios

ProbDeclare
specification

From traces to logs

Stochastic conformance (granularity: scenario)

Consistent scenarios

ProbDeclare

specification

Specification
distribution

From traces to logs

Stochastic conformance (granularity: scenario)

Consistent scenarios

ProbDeclare

specification _ .
1

Specification Log
distribution distribution

From traces to logs

Stochastic conformance (granularity: scenario) Can be refined

through trace
Consistent scenarios alignments

ProbDeclare

specification — -
N

Specification Log
distribution distribution

- i

(Earth mover’s) distance

Processes are not flat

timestamp overall log

2019-09-22 10:00:00 | create order oq

2019-09-22 10:01:00 | add item to order oq

2019-09-23 09:20:00 create order 09

2019-09-23 09:34:00 | add item 75 1 to order o2

2019-09-23 11:33:00 | create order o3

2019-09-23 11:40:00 | add item 23,1 to order o3

2019-09-23 12:27:00 | pay order o3

2019-09-23 12:32:00 | add item to order o1

2019-09-23 13:03:00 | pay order o;

2019-09-23 14:34:00 | load item into package

2019-09-23 14:45:00 | add item 72 > to order o2

2019-09-23 14:51:00 | load item i3 1 into package

2019-09-23 15:12:00 | add item 72 3 to order o2

2019-09-23 15:41:00 | pay order oo

2019-09-23 16:23:00 | load item 75 ; into package

2019-09-23 16:29:00 | load item into package

2019-09-23 16:33:00 | load item 5 o into package

2019-09-23 17:01:00 | send package

2019-09-24 06:38:00 | send package

2019-09-24 07:33:00 | load item 79 3 into package p3

2019-09-24 08:46:00 | send package p3

2019-09-24 16:21:00 | deliver package

2019-09-24 17:32:00 | deliver package

2019-09-24 18:52:00 | deliver package ps3

2019-09-24 18:57:00 | accept delivery p3

2019-09-25 08:30:00 | deliver package

2019-09-25 08:32:00 | accept delivery

2019-09-25 09:55:00 | deliver package

2019-09-25 17:11:00 | deliver package

2019-09-25 17:12:00 | accept delivery

Processes are not flat

contains

carried
in

Package

timestamp

overall log

2019-09-22 10:00:00

create order o;

2019-09-22 10:01:00

add item to order oq

2019-09-23 09:20:00

create order 09

2019-09-23 09:34:00

add item 75 ;1 to order o9

2019-09-23 11:33:00

create order o3

2019-09-23 11:40:00

add item 23,1 to order o3

2019-09-23 12:27:00

pay order o3

2019-09-23 12:32:00

add item 7; 5 to order o

2019-09-23 13:03:00

pay order o7

2019-09-23 14:34:00

load item into package

2019-09-23 14:45:00

add item 12 > to order o2

2019-09-23 14:51:00

load item 73 1 into package

2019-09-23 15:12:00

add item 72 3 to order o2

2019-09-23 15:41:00

pay order oo

2019-09-23 16:23:00

load item 75 1 Into package

2019-09-23 16:29:00

load item 71 o into package

2019-09-23 16:33:00

load item 5 o Into package

2019-09-23 17:01:00

send package

2019-09-24 06:38:00

send package

2019-09-24 07:33:00

load item 79 3 into package p3

2019-09-24 08:46:00

send package p3

2019-09-24 16:21:00

deliver package

2019-09-24 17:32:00

deliver package

2019-09-24 18:52:00

deliver package p3

2019-09-24 18:57:00

accept delivery ps

2019-09-25 08:30:00

deliver package

2019-09-25 08:32:00

accept delivery

2019-09-25 09:55:00

deliver package

2019-09-25 17:11:00

deliver package

2019-09-25 17:12:00

accept delivery

Processes are not flat

event log for orders

. overall log order o order oo order o3
= 09-22 10:00:00 | create order o; create order
2019-09-22 10:01:00 | add item to order o7 add item
2019-09-23 09:20:00 create order o9 create order
2019-09-23 09:34:00 | add item to order o9 add item
‘ 2019-09-23 11:33:00 | create order o3 create order
2019-09-23 11:40:00 | add item 23,1 to order o3 add item
2019-09-23 12:27:00 | pay order o3 pay order
2019-09-23 12:32:00 | add item to order o7 add item
2019-09-23 13:03:00 | pay order o pay order
2019-09-23 14:34:00 | load item into package load item
2019-09-23 14:45:00 | add item 22 > to order o2 add item
2019-09-23 14:51:00 | load item i3 1 into package load item
2019-09-23 15:12:00 | add item 72 3 to order o2 add item
2019-09-23 15:41:00 | pay order o2 pay order
2019-09-23 16:23:00 | load item into package load item
2019-09-23 16:29:00 | load item into package load item
2019-09-23 16:33:00 | load item 5 o into package load item
2019-09-23 17:01:00 | send package send package send package
2019-09-24 06:38:00 | send package send package send package
hLO-09-24 07:33:00 | load item 72 3 into package p3 load item
N0-24 08:46:00 | send package p3 send package
L 16:21:00 | deliver package deliver package deliver package
R.32:00 | deliver package deliver package deliver package
00 | deliver package ps deliver package
accept delivery ps accept delivery
aliver package deliver package deliver package
delivery accept delivery accept delivery
ackage deliver package deliver package
& deliver package deliver package
accept delivery accept delivery

Processes are not flat

2 overall log order o

9-09-22 10:00:00 | create order create order
2019-09-22 10:01:00 | add item to order add item
2019-09-23 09:20:00 | create order oo
2019-09-23 09:34:00 | add item to order oo
2019-09-23 11:33:00 | create order o3
2019-09-23 11:40:00 | add item 23,1 to order o3
2019-09-23 12:27:00 | pay order o3
2019-09-23 12:32:00 | add item to order add item
2019-09-23 13:03:00 | pay order pay order
2019-09-23 14:34:00 | load item into package load item
2019-09-23 14:45:00 | add item to order oo
2019-09-23 14:51:00 | load item i3 1 into package
2019-09-23 15:12:00 | add item 22 3 to order o2
2019-09-23 15:41:00 | pay order o2
2019-09-23 16:23:00 | load item into package
2019-09-23 16:29:00 | load item into package load item
2019-09-23 16:33:00 | load item into package

2019-09-23 17:01:00

send package

send package

2019-09-24 06:38:00

send package

send package

A 9-09-24 07:33:00

load item 79 3 into package

N0-24 08:46:00

send package

L 16:21:00

deliver package

deliver package

K.32:00

deliver package

deliver package

00

deliver package

accept delivery

aliver package

deliver package

delivery

accept delivery

ackage

deliver package

R C

deliver package

accept delivery

event log for orders

order oo

create order

order o3

add item
create order
add item
pay order
add item
load item
add item
pay order
load item
load item

send package

send package

load item

send package

deliver package

deliver package

deliver package

accept delivery

deliver package

accept delivery

deliver package

deliver package

accept delivery

3

create order

(3)

3

add item 0
(9]

3

pay order

(3)

3

load item

(6) 0
4)
send package

(5)

3

deliver package

(11)

5
2

accept delivery

()

3

Need of a 3D model

objects

time

Object-centric behavioral

constraints

activities

Object-centric behavioral constraints
Dimension 1: data model to classify and relate objects

e relationship types
 multiplicities (one-to-one, one-to-many, many-to-many)

Person
A

Candidate | - _ | Application Job Offer |, 1] Job Profile
- - responds to - refers to -

Object-centric behavioral constraints

Dimension 2: activities

The register data task /s about a Person.

* activities A Job Offer is created by executing the post offer task.
o activity-class A Job Offer %s closed by determir_ring the \fvi_nner.

C e e An Application is created by executing the submit task.
* multiplicities An Application is promoted by marking it as eligible.

A

Candidate | - _ | Application Job Offer |, 1] Job Profile
- - responds to - refers to -

Object-centric behavioral constraints

Dimension 2: activities

The register data task /s about a Person.

* activities A Job Offer is created by executing the post offer task.
o activity-class A Job Offer %s closed by determir_ring the \fvi_nner.

C e e An Application is created by executing the submit task.
* multiplicities An Application is promoted by marking it as eligible.

data eligible winner
is about 1 closes
‘\‘ '.’ post i cancel
% creates \‘ 1 promotes E
Vo creazje:s‘\ E ,"él‘O,DS

\ l'
1y 1)
Job Offer |

1 Job Profile

|

responds to

Object-centric behavioral constraints

Emergent object lifecycles

Application Job

Offer
mark as

register
data

IS about E

determine
winner

1 closes E

Person

cancel
hiring
Y 4
V4
V4

A

Candidate | - 1..4| Application Job Offer 1 | Job Profile

Application _Job Offer_ Job Profile
< made by ‘, responds to " efers to -

Object-centric behavioral constraints

Dimension 3: the process

A Job Offer closed by a determine winner task cannot be stopped by executing

e constraints... the cancel hiring task (and vice-versa).

An Application can be submitted only if, beforehand, the data about the Candi-
date who made that Application have been registered.

register mark as determine
data eligible winner
| [

is about E 1 closes E

: ' !
I \ I I
“ | otfer ' hiring
erson : an
creates promotes offer : hiring
- | 1 : ’

| " P
\ 4
A R creates s, i ,/'stops
\ I

15 10 R
Candidate 1) y 1 Job Profile

\

responds to

Object-centric behavioral constraints

Dimension 3: the process object co-referencing

A Job Offer closed by a determine winner task cannot be stopped by executing

e constraints... the cancel hiring task (and vice-versa).

e ...With data co-

referencing An Application can be submitted only if, beforehand, the data about the Candi-
date who made that Application have been registered.

relation co-referencing
register mark as
data eligible | winner |

is about 1) 1 closes i

]
! !
P : ' post : cancel
erson : an
creates \ | promotes offer : hiring
\ ' : ,
I

1 AN ¢
! \ ! ¢
] creates s, ! ,» Stops
a 1S 10,1
\

Job Offer |,

1 Job Profile

1

responds to

Object co-referencing on response

Relation co-referencing on response

objects

Object-centric behavioral constraints

Dimension 3: the process

A Job Offer closed by a determine winner task cannot be stopped by executing

* constraints... the cancel hiring task (and vice-versa).

e ...With data co-

referencing An Application can be submitted only if, beforehand, the data about the Candi-
date who made rthat Application have been registered.
data

mark as
eligible

i
. I
! R !
is about 1 ! ' ' v closes: |
: 1 ! \ ' 1 L7
: ' ! Vg post !
Person : ' ! - offer Lo
; creates v 1 promotes : . o
. \ ! . ' 1o
- : [o 1%, L
/\ ; v o creates, i, slops
: [;o IS
; ; P
Candidate | 4 i 1 4) P ’

responds to

Object-centric behavioral constraints

Dimension 3: the process

A winner can be determined for a Job Offer only if ar least one Application

_ responding to that Job Offer has been previously marked as eligible.
* ...with data co- Foreach Application responding to a Job Offer, if the Application is marked

referencing as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

register mark as
data : eligible

e constraints...

determine
winner .
0,"
‘l
Y 4

) I : \ I
is about 1 1 ! LY : closes :
|
' : \] post
Person : ! ! offer
: creates i promotes
\ 1
- ! v 1
|
I

P createss, ' i ,/'stops
1 | s 10,

\

Job Offer

responds to -

A

Candidate 1

Semantics and formalization

Process execution: temporal knowledge graph
Data model: description logics

Object-centric constraints: temporal description logics

di, : Deliver ltems

di; : Deliver ltems
po1 : Pay Order © '
wiz : Wrap ltem (o)
pis : Pick Item (o)
wir : Wrap Item

wip : Wrap ltem (o)

pir : Pick Item (o)

prepares
pi; : Pick ltem

i Y€

ills
oly : Order Line
ol, : Order Line

i
: é : re;ersto
ills
O | @ | @
ains é
| g i g contains g resultsiﬁ
results 1f
d; : Delivery — : ; ; ; ; ; - o)

ol5 : Order Line .
d, : Delivery — .
1o 4] 5] 13 I4 5 6 17 18 19

O<

Achieved and ongoing results

Reasoning
* Direct approach -> undecidable

e Careful “object-centric” reformulation
-> decidable in EXPTIME (same as reasoning on UML diagrams)

Monitoring (ongoing)
 Hybrid reasoning (closed on the past, open on the future)

Discovery (ongoing)

e Construction of

e Standard discovery on views
* Object-centric

Conclusions

. a framework for the intelligent management
of processes at the intersection of Al and BPV

Central task: framing

Declarative approach: solid basis to framing with uncertainty,
data, objects and their interactions

* Reasoning via well-established formalisms and techniques

Foundations well understood, effort needed towards
engineering

Thanks to Wil van der Aalst, Anti Alman, Alessandro Artale, Federico Chesani, Giuseppe De
Giacomo, Riccardo De Masellis, Claudio Di Ciccio, Marlon Dumas, Dirk Fahland, Paolo Felli,
Alessandro Gianola, Alisa Kovtunova, Fabrizio Maggi, Andrea Marrella, Paola Mello, Jan
Mendling, Fabio Patrizi, Rafael Penaloza, Maja Pesic, Andrey Rivkin, Michael Westergaard

oo - g =
"R CLaS 2Y - o o N
N PRy ST
E 2 A p.!l. - T
v A TR e

NN -

e
:
¥

B

o8
e

i
3

v

¢

«

-
O
>
X
-
1",
. o
-

AT
rv‘f)<w¢;. e CEoE, >

AR

