LINEAR TEMPORAL LOGIC MODULO THEORIES OVER FINITE TRACES

Nicola Gigante Free University of Bozen-Bolzano, Italy AAAI Spring Symposium 2023 San Francisco, CA, USA March 29, 2023

Who are we?

Luca Geatti University of Udine

Formal verification, automated synthesis, temporal logics.

Alessandro Gianola University of Bolzano

Formal verification, data-aware systems, business process modeling.

Nicola Gigante University of Bolzano

Formal verification, temporal planning, temporal logics. **Linear Temporal Logic** (LTL) is the most common formalism to specify temporal properties in **formal verification** and **artificial intelligence**.

The propositional nature of LTL and similar logics limits them to finite-state systems.

However, many scenarios are difficult or impossible to abstract finitely:

- systems involving arithmetics
- systems involving complex and unbounded data structures
- systems involving relational databases

For this reason, we introduced LTLf modulo theories (LTL^{MT}) [GGG22]:

- first-order extension of LTLf
- propositions are replaced by first-order sentences over arbitrary theories, à la SMT
- (semi-)decision procedures based on off-the-shelf SMT solvers

Many first-order extensions of LTL have been studied, however:

- many first-order temporal logics have been extensively studied from theoretical perspectives but without any practical development (see, e.g. [Kon+04])
- others led to practically applicable approaches but support quite ad-hoc syntax and semantics (see, e.g. [Cim+20])

Our approach is at the same time theoretically well-grounded, general, and practically oriented.

 $\mathsf{LTLf}^\mathsf{MT}$ is supported by our BLACK^1 temporal reasoning framework:²

- a software library and tool for temporal reasoning in linear-time logics
- supports LTL/LTLf and LTLf^{MT} in many flavors
- playground for many of our research directions

Data-aware systems

Systems that involve the processing and manipulation of data taken from an infinite domain.

Examples:

- (relational) database-driven systems
- systems involving complex data-structures
- systems involving arithmetics
- any combination of the above!

Data-aware systems are **infinite-state**, leading very easily to **undecidability** of verification, model-checking, satisfiability etc ...

But they are still worth studying!

LTLf^{MT} is our take at the verification of infinite-state systems.

LTLf^{MT} extends LTLf by replacing propositions with first-order sentences.

- symbols can be uninterpreted, or interpreted by arbitrary first-order theories
 - *e.g.*, +, < interpreted as integer sum/comparison
- constants, relational/function symbols, etc. can be both rigid or non-rigid
- interpreted over finite-traces

$$G(x = 2y)$$
 $(x < y) \cup (y = 0)$ $G(x > 5) \land F(x = 0)$
 $G(\exists y(x = 2y))$

$$G(x = 2y)$$
 (x < y) U (y = 0) $G(x > 5) \land F(x = 0)$
 $G(\exists y(x = 2y))$

$$G(x = 2y)$$
 $(x < y) \cup (y = 0)$ $G(x > 5) \land F(x = 0)$
 $G(\exists y(x = 2y))$

$$G(x = 2y)$$
 $(x < y) \cup (y = 0)$ $G(x > 5) \land F(x = 0)$
 $G(\exists y(x = 2y))$

$$G(x = 2y)$$
 $(x < y) \cup (y = 0)$ $G(x > 5) \land F(x = 0)$
 $G(\exists y(x = 2y))$

$$x = 0 \land ((\bigcirc x = x + 1) \cup x = 42)$$
$$y = 1 \land \mathsf{G}(\bigcirc y = y + 1 \land x = 2y)$$
$$p(0) \land \mathsf{G} \forall x (p(x) \to \widetilde{\mathsf{X}} p(x + 1)) \land \mathsf{F} p(42)$$

$$x = 0 \land ((\bigcirc x = x + 1) \cup x = 42)$$
$$y = 1 \land \mathsf{G}(\bigcirc y = y + 1 \land x = 2y)$$
$$p(0) \land \mathsf{G} \forall x (p(x) \to \widetilde{\mathsf{X}} p(x + 1)) \land \mathsf{F} p(42)$$

$$x = 0 \land ((\bigcirc x = x + 1) \lor x = 42)$$
$$y = 1 \land \mathsf{G}(\bigcirc y = y + 1 \land x = 2y)$$
$$p(0) \land \mathsf{G} \forall x (p(x) \to \widetilde{\mathsf{X}} p(x + 1)) \land \mathsf{F} p(42)$$

$$x = 0 \land ((\bigcirc x = x + 1) \lor x = 42)$$
$$y = 1 \land \mathsf{G}(\bigcirc y = y + 1 \land x = 2y)$$
$$p(0) \land \mathsf{G} \forall x (p(x) \to \widetilde{\mathsf{X}} p(x + 1)) \land \mathsf{F} p(42)$$

LTLf^{MT} is clearly **undecidable**, but:

- over decidable first-order theories/fragments, it is semi-decidable
- our semi-decision procedure always answers yes for satisfiable formulas, may not terminate for unsatisfiable ones (but sometimes does)
- decidable theories and first-order fragments abound, e.g.:
 - linear integer/real arithmetic (LIA/LRA)
 - quantifier-free equality and uninterpreted functions (QF_EUF)
 - arrays, fixed-size bitvectors, algebraic data types, floating-point numbers, etc.
 - effectively propositional (EPR) logic: $\exists^* \forall^* \varphi$
 - two-variables first-order logic (FO²)

In propositional LTLf, finite traces makes everything simpler.

e.g., NFAs vs Büchi automata

However, complexities remain the same.

In the first-order world, this is not the case!

- LTLf^{MT} is semi-decidable for decidable first-order theories
- instead, for many decidable theories, LTL^{MT} is **not even semi-decidable**!

Why?

• the difference between tiling and recurrent tiling

So the finite-traces semantics is the only one giving us any hope of solving anything.

How do we test satisfiability of LTLf^{MT} formulas?

- an **iterative** procedure tests the existence of models of length up to $k \ge 0$, for increasing values of k
- given an LTLf^{MT} formula φ and a k, we build a purely first-order formula (φ)_k that is satisfiable if and only if there is a model for φ of length at most k
- $\langle \phi \rangle_k$ is given to an off-the-shelf SMT solver

That's cool, but does it work?

• everything here is **undecidable**

That's cool, but does it work?

- everything here is **undecidable**
- but...

Test setting:

- simulation of a company hiring process
- nondeterministic transitions:
 - dependent on arithmetic constraints
 - acting on unbounded relational data
- minimal length of the counterexamples dependent over scalable parameter N
- two modelings of the same system:
 - P₁ employs arithmetic constraints
 - P₂ avoids arithmetics, simulates constraints by other means
- two different properties for each variant

Results:

- 5 minutes timeout reached at N = 70
- exponential growth
 - but could be much worse, the problem is undecidable!
- liveness property not harder than the safety one
- system with explicit arithmetics faster to verify
- everything implemented in BLACK

Where to go from now?

- find **decidable** LTL^{MT} and LTLf^{MT} fragments
- find more **efficient** LTLf^{MT} fragments (not necessarily decidable)
- reactive synthesis for LTLf^{MT} objectives
- theoretical properties of LTLf^{MT}
- automata modulo theories

THANK YOU

REFERENCES

- [Cim+20] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, and Stefano Tonetta. "SMT-based satisfiability of first-order LTL with event freezing functions and metric operators." In: Inf. Comput. 272 (2020), p. 104502. DOI: 10.1016/j. ic.2019.104502.
- [GGG22] Luca Geatti, Alessandro Gianola, and Nicola Gigante. "Linear Temporal Logic Modulo Theories over Finite Traces." In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. ijcai.org, 2022, pp. 2641–2647. DOI: 10.24963/ijcai.2022/366.
- [Kon+04] Roman Kontchakov, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. "Temporalising Tableaux." In: *Stud Logica* 76.1 (2004), pp. 91–134. DOI: 10. 1023/B:STUD.0000027468.28935.6d.