
On the Effectiveness of Temporal Logics on Finite Traces in AI

Reactive Synthesis for
DECLARE Process Models

Luca Geatti *
Marco Montali
Andrey Rivkin

AAAI 2023 Spring Symposium Series, March 27-29, 2023, Hyatt Regency San Francisco Airport, CA, USA

Background
DECLARE

• Pattern-based declarative process
modelling language.

• It is used for the modelling of business
processes.

• It relies on a pre-defined set of unary and
binary templates.

• Each pattern is formalized in LTLf.

Background
DECLARE

• It is interpreted over simple traces

• Simple trace

• DECLARE patterns are conjunctively related.
DECLARE specification

Phi := P1 & P2 & ... & Pn

Background
Reactive Synthesis
and
Realizability

Background
Reactive Synthesis • History:

• originally proposed by Church

• solved for S1S by Landweber and
Buchi (nonelementary complexity)

• solved for LTL by Pnueli and Rosner
(doubly exponential complexity)

• requires Safra's determinization
algorithm

• Safraless approach & symbolic
techniques (Kupferman & Vardi)

Background
Reactive Synthesis

• Complexity:

• LTL : 2EXPTIME-complete

• LTLf : 2EXPTIME-complete

• SafetyLTL : 2EXPTIME-complete

• ppLTL : EXPTIME-complete

Contributions
1. We define the Reactive Synthesis problem for DECLARE

• assume-guarantee paradigm

2. Naive algorithm (reduction to LTLf reactive synthesis)

• doubly exponential time complexity

3. Efficient algorithm

• singly exponential time complexity

• based on the "pastification" of all DECLARE patterns

4. Symbolic algorithm

• new encoding of pure past LTL formulas into symbolic DFAs

Reactive Synthesis for DECLARE
Definition

• Reactive Synthesis of LTLf over simple traces

General Traces Simple Traces

strict alternation

Reactive Synthesis for DECLARE
Definition

• Assume-Guarantee paradigm:

• There is background knowledge on how Environment operates. In particular, in
BPM the external stakeholders participate to the process in a constrained way:
when it is their turn, they take (arbitrary) decisions on which next action to trigger
but only on the subset of all actions made available by the information system
supporting the enactment of the process [Dumas et al., 2018]

Phi_E := {P1, ... , Pm}

Phi_C := {P1, ... , Pn}

• Definition of DECLARE realizability

We say that the pair (Phi_E, Phi_C)
is realizable iff Phi_E -> Phi_C is
realizable over simple traces.

Algorithms

A Naive Algorithm
for DECLARE reactive synthesis

• Reduction to LTLf reactive synthesis

• Auxiliary formulas for forcing simple trace + strict alternation

is realizable
<=>

is realizable

An Efficient Algorithm
for DECLARE reactive synthesis

(Phi_E, Phi_C) (Psi_E, Psi_C) DFA reachability
game

realizable unrealizablePastification

Pastification of DECLARE patterns
in polynomial space

• DECLARE is one of the very few
logics that admits a polynomial-size
pastification.

• We conjecture that a polynomial-
size pastification does not exists
even for LTL[X,F].

An Efficient Algorithm
Total Complexity

(Phi_E, Phi_C) (Psi_E, Psi_C) DFA reachability
game

realizable unrealizable

polynomial exponential polynomial

Total : EXPTIME

One exponential more efficient than LTLf

Symbolic
Algorithm

An Efficient Algorithm
for DECLARE reactive synthesis

(Phi_E, Phi_C) (Psi_E, Psi_C) symbolic
DFA

reachability
game

realizable unrealizable

An Efficient Algorithm
for DECLARE reactive synthesis

(Phi_E, Phi_C) (Psi_E, Psi_C) symbolic
DFA

reachability
game

realizable unrealizable
• no states or edges are represented

in memory

• initial states, edges, and final states
are represented using Boolean
formulas

An Efficient Algorithm
for DECLARE reactive synthesis

(Phi_E, Phi_C) (Psi_E, Psi_C) symbolic
DFA

reachability
game

realizable unrealizable
• no states or edges are represented

in memory

• initial states, edges, and final states
are represented using Boolean
formulas

• NEW TECHNIQUE

• very simple construction

• uses classic expansion rules

An Efficient Algorithm
for DECLARE reactive synthesis

(Phi_E, Phi_C) (Psi_E, Psi_C) symbolic
DFA

reachability
game

realizable unrealizable

• can be solved symbolically very
efficiently

• since the organization of the
SYNTCOMP, a lot of optimized tools
have been proposed to solve this
problem

An Efficient Algorithm
for DECLARE reactive synthesis

(Phi_E, Phi_C) (Psi_E, Psi_C) symbolic
DFA

reachability
game

realizable unrealizable

• can be solved symbolically very
efficiently

• since the organization of the
SYNTCOMP, a lot of optimized tools
have been proposed to solve this
problem

• we reduced DECLARE reactive
synthesis to a problem for which
there are very efficient tools

Future Work
on DECLARE reactive synthesis

Implementation in a tool
 +
Worst-case complexity (EXPTIME-completeness)
 +
...

