# Planning for Pure-Past Linear Temporal Goals

#### Francesco Fuggitti

fuggitti@diag.uniroma1.it

Joint work with Luigi Bonassi, Giuseppe De Giacomo, Marco Favorito, Alfonso Gerevini and Enrico Scala

AAAI 2023 Spring Symposium





#### Planning for Temporally Extended Goals

- Capture a richer class of plans using temporal logics
  - Deterministic planning [Bacchus et al. 1996; 1997; DeGiacomo&Vardi 1999; Bacchus&Kabanza 2000; ...]
  - Planning via Model Checking [Cimatti et al. 1997; 1998; Giunchiglia&Traverso 1999; ...]
- Recently, growing interest in the use of the finite-trace variant of LTL
  - Deterministic planning [Baier&McIIraith 2006; Torres&Baier 2015; ...]
  - Nondeterministic domain models (FOND) [Camacho et al. 2017; DeGiacomo&Rubin 2018; ...]

|                           | Reachability Goals Temporally Extended Goals (LTLf/LD |                   |
|---------------------------|-------------------------------------------------------|-------------------|
| Deterministic Planning    | PSPACE-complete                                       | PSPACE-complete   |
| Nondeterministic Planning | EXPTIME-complete                                      | 2EXPTIME-complete |

## Pure-Past Linear Temporal Logic (PPLTL)

- Looks at the trace backward, and evaluates formulas on the last instant of the trace (i.e., the current instant)
- Past temporal operators only: (Y)esterday, (S)ince, (O)nce in the past, (H)istorically

#### **Computational properties:**

- As expressive as LTLf, but translating one into the other is prohibitive (3EXPTIME) [DeGiacomo et al. 2020]
- PPLTL to DFA is worst-case *single* exponential (vs. *double* exponential for LTLf to DFA) [Chandra et al. 1981; DeGiacomo et al. 2020]

### **PPLTL** in Planning

- Little attention to AI planning, but commonly employed in other areas of AI
  - o non-Markovian rewards in MDPs [Bacchus et al. 1996]
  - o non-Markovian models [Gabaldon2011]
  - o norms in multi-agent systems [Fisher&Wooldridge2005; Knobbout et al. 2016; Alechina et al. 2018]
- Actually, many interesting properties expressed in LTLf are *polynomially* related (in their size) to their *semantic* equivalent PPLTL (and vice versa)

| DECLARE Template                                                                                                                                                                                                                                     | Equivalent PPLTL Formula                                                                                                                                                                                                                                    | Equivalent $LTL_f$ Formula                                                                                                        |                                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| init(a)<br>existence $(a)$<br>absence $(a)$                                                                                                                                                                                                          |                                                                                                                                                                                                                                                             | $a \\ F(a) \\ \neg F(a)$                                                                                                          | PDDL3 Operator                                                                                                                                                                      | Equivalent PPLTL Formula                                                                                                                                  | Equivalent LTL f Formul                                                                                                                                                                            |
| $\label{eq:absence2(a)} \begin{split} & \text{absence2}(a) \\ & \text{choice}(a,b) \\ & \text{co-existence}(a,b) \\ & \text{responded-existence}(a,b) \\ & \text{response}(a,b) \\ & \text{precedence}(a,b) \\ & \text{succession}(a,b) \end{split}$ | $\begin{array}{l} H(a \rightarrow WYH(\neg a)) \\ O(a) \lor O(b) \\ (O(a) \lor O(b)) \land \neg (O(a) \land O(b)) \\ H(\neg a) \leftrightarrow H(\neg b) \\ O(a) \rightarrow O(b) \\ (\neg a  S  b) \lor H(\neg a) \\ H(b \rightarrow O(a)) \\ \end{array}$ | $ \begin{aligned} F(a) &\leftrightarrow F(b) \\ F(a) &\to F(b) \\ G(a &\to F(b)) \\ (\neg b  U  a) \lor G(\neg b) \end{aligned} $ | (at-end $\theta$ )<br>(always $\theta$ )<br>(sometime $\theta$ )<br>(sometime-after $\theta_1 \ \theta_2$ )<br>(sometime-before $\theta_1 \ \theta_2$ )<br>(at-most-once $\theta$ ) | $ \begin{array}{l} \theta \\ H(\theta) \\ O(\theta) \\ (\neg \theta_1  S  \theta_2) \lor H(\neg \theta_1) \end{array} $                                   | $ \begin{array}{l} F(\theta \wedge end) \\ G(\theta) \\ F(\theta) \\ G(\theta_1 \to F(\theta_2)) \\ \theta_2  R \neg \theta_1 \\ G(\theta \to (\theta  U  (G(\neg \theta) \lor end ) \end{array} $ |
| chain-response $(a, b)$<br>chain-precedence $(a, b)$<br>chain-succession $(a, b)$                                                                                                                                                                    | $ \begin{array}{l} H(Y(a) \to b) \land \neg a \\ H(b \to Y(a)) \\ (H(Y(a) \to b) \land \neg a) \land \\ H(Y(\neg a) \to \neg b) \end{array} $                                                                                                               | $ \begin{array}{l} G(a \to X(b)) \\ G(X(b) \to a) \land \neg b \\ G(a \leftrightarrow X(b)) \end{array} $                         | (hold-during $n_1 n_2 \theta$ )                                                                                                                                                     | $ \begin{array}{l} \bigvee_{0 \leq i \leq n_1} (\theta \wedge Y^i(start)) \lor \\ \bigwedge_{n_1 < i \leq n_2} H(\theta \lor WY^i(Y(true))) \end{array} $ | $ \begin{array}{l} \bigvee_{0 \leq i \leq n_1} X^i(\theta \wedge end) \vee \\ \bigwedge_{n_1 < i \leq n_2} W X^i(\theta) \end{array} $                                                             |
| not-co-existence $(a, b)$<br>not-succession $(a, b)$<br>not-chain-succession $(a, b)$                                                                                                                                                                | $ \begin{array}{l} O(a) \to \neg O(b) \\ H(b \to \neg O(a)) \end{array} $                                                                                                                                                                                   | $ \begin{aligned} F(a) &\to \neg F(b) \\ G(a &\to \neg F(b)) \\ G(a &\to \neg X(b)) \end{aligned} $                               | * (hold-after $n \theta$ )                                                                                                                                                          | $\begin{array}{l} \bigvee_{0 \leq i \leq n} (\theta \wedge Y^i(start)) \lor \\ O(\theta \wedge Y^{n+1}(O(start))) \end{array}$                            | $\begin{array}{l} \bigvee_{\substack{0\leq i\leq n}}X^{i}(\theta\wedgeend)\vee\\ X^{n+1}(F(\theta)) \end{array}$                                                                                   |

## Handling PPLTL Goals

Intuition: given the prefix of a trace, while LTLf has to consider all possible extensions, PPLTL can simply be evaluated on the prefix (i.e., the history produced so far)

#### How?

Exploit the "fixpoint characterization" of temporal formulas [Gabbay et al. 1980; Manna 1982; Barringer et al., 1989; Emerson 1990]

- pnf(p) = p;
- $pnf(Y\phi) = Y\phi;$
- $pnf(\phi_1 \mathsf{S} \phi_2) = pnf(\phi_2) \lor (pnf(\phi_1) \land \mathsf{Y}(\phi_1 \mathsf{S} \phi_2));$
- $pnf(\phi_1 \land \phi_2) = pnf(\phi_1) \land pnf(\phi_2);$
- $pnf(\neg \phi) = \neg pnf(\phi).$

To evaluate a PPLTL formula, we only need to keep track of the truth value of *some* of its subformulas!!!

### **Evaluating PPLTL Goals**

#### Technique

- Collect these key subformulas as propositions in a set  $\Sigma_{\phi}$
- Define an interpretation function  $\sigma: \Sigma_{\varphi \to \{T, \bot\}}$  that tells which propositions are true at a given instant of time
- Given the propositional interpretation of the *current instant*  $s_i$  and truth value  $\sigma_i$  of propositions in  $\Sigma_{\varphi}$ , evaluate any PPLTL formulas at instant *i* through val() predicate recursively as follows:
- $val(p, \sigma_i, s_i)$  iff  $s_i \models p$ ;
- val $(\mathbf{Y}\phi', \sigma_i, s_i)$  iff  $\sigma_i \models ``\mathbf{Y}\phi'$ ";

•  $\operatorname{val}(\phi_1 \operatorname{S} \phi_2, \sigma_i, s_i)$  iff  $\operatorname{val}(\phi_2, \sigma_i, s_i) \lor (\operatorname{val}(\phi_1, \sigma_i, s_i) \land \sigma_i \models "Y(\phi_1 \operatorname{S} \phi_2)");$ 

- $\operatorname{val}(\phi_1 \land \phi_2, \sigma_i, s_i)$  iff  $\operatorname{val}(\phi_1, \sigma_i, s_i) \land \operatorname{val}(\phi_2, \sigma_i, s_i);$
- $\operatorname{val}(\neg \phi', \sigma_i, s_i)$  iff  $\neg \operatorname{val}(\phi', \sigma_i, s_i)$ .

#### Theorem

Given  $\langle \sigma_0, ..., \sigma_n \rangle$ , a trace  $\langle s_0, ..., s_n \rangle$  satisfies a PPLTL formula  $\varphi$  *if and only if* val $(\varphi, \sigma_n, s_n)$ 

## Planning for PPLTL Goals

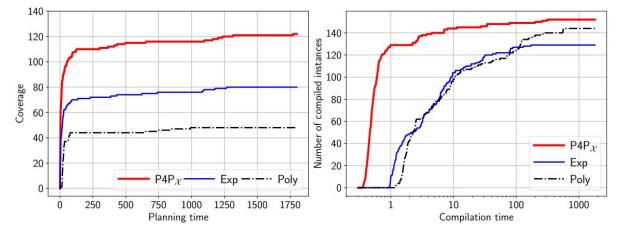
- Introduce only *few* new fluents, at most linear in the size of the PPLTL goal, i.e. minimal overhead
- No spurious additional actions
- Sidestep altogether the standard automata construction

| Components                          | Encoding                                                                                                                                                                                                                                                                                                          |                                 |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
| Fluents $\mathcal{F}'$              | $\mathcal{F}' := \mathcal{F} \cup \{``Y\phi" \mid ``Y\phi" \in \Sigma_{arphi}\}$                                                                                                                                                                                                                                  |                                 |  |  |  |
| Derived Predicates $\mathcal{F}'_d$ | $_{er} \ \mathcal{F}'_{der} := \mathcal{F}_{der} \cup \{ val_{\phi} \mid \phi \in sub(\varphi) \}$                                                                                                                                                                                                                |                                 |  |  |  |
|                                     | $\mathcal{X}' := \mathcal{X} \cup \{x_{\phi} \mid \phi \in sub(\varphi)\}$ where $x_{\phi}$ is                                                                                                                                                                                                                    |                                 |  |  |  |
| Axioms $\mathcal{X}'$               | $\int \operatorname{val}_p \leftarrow p$                                                                                                                                                                                                                                                                          | $(\phi = p)$                    |  |  |  |
|                                     | $val_{Y\phi'} \leftarrow ``Y\phi'"$                                                                                                                                                                                                                                                                               | $(\phi = \mathbf{Y}\phi')$      |  |  |  |
|                                     | $\left\{ val_{\phi_1 S \phi_2} \leftarrow (val_{\phi_2} \lor (val_{\phi_1} \land ``Y(\phi_1 S \phi_2)")) \right.$                                                                                                                                                                                                 | $(\phi = \phi_1 S\phi_2)$       |  |  |  |
|                                     | $val_{\phi_1 \land \phi_2} \leftarrow (val_{\phi_1} \land val_{\phi_2})$                                                                                                                                                                                                                                          | $(\phi = \phi_1 \wedge \phi_2)$ |  |  |  |
|                                     | $\begin{cases} val_p \leftarrow p \\ val_{Y\phi'} \leftarrow ``Y\phi'`' \\ val_{\phi_1}s_{\phi_2} \leftarrow (val_{\phi_2} \lor (val_{\phi_1} \land ``Y(\phi_1 S\phi_2)")) \\ val_{\phi_1 \land \phi_2} \leftarrow (val_{\phi_1} \land val_{\phi_2}) \\ val_{\neg \phi'} \leftarrow \neg val_{\phi'} \end{cases}$ | $(\phi = \neg \phi')$           |  |  |  |
| Action Labels $A$                   | A := A, i.e., unchanged                                                                                                                                                                                                                                                                                           |                                 |  |  |  |
| Preconditions pre                   | $pre(a) := pre(a)$ for every $a \in A$ , i.e., unchanged                                                                                                                                                                                                                                                          |                                 |  |  |  |
| Effects $eff'$                      | $\begin{array}{l} ef\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                     |                                 |  |  |  |
| Initial State $s'_0$                | $s_0':=\sigma_0\cup s_0$                                                                                                                                                                                                                                                                                          |                                 |  |  |  |
| Goal $G'$                           | $G':=val_\varphi$                                                                                                                                                                                                                                                                                                 |                                 |  |  |  |

Sound and complete approach to symbolically encode PPLTL temporally extended goal formulas in planning domains that is *linear* in both the size of the domain specification and the size of the PPLTL goal

#### **Results for Deterministic Planning**

- Introduce the Plan4Past<sup>1</sup> system
- Compare Plan4Past against state-of-the-art techniques for LTLf, Exp [Baier&McIIraith 2006] and Poly [Torres&Baier 2015], on a set of equivalent (semantic- and size-wise) LTLf/PPLTL formulas
- IPC domains: BLOCKS, ELEVATOR, OPENSTACKS, ROVERS



## Summary and Future Work

- How to efficiently handle and evaluate PPLTL formulas
- Sound and complete approach to solve planning for PPLTL goals that is optimal wrt theoretical complexity with a clear advantage in practice
- To appear at ICAPS23: "Planning for Temporally Extended Goals in Pure-Past Linear Temporal Logic"

#### **Future Work:**

- Study nondeterministic planning
- Developing PPLTL-aware heuristics that exploit the structure of the formula
- Incorporate PPLTL patterns into PDDL, giving rise to PDDL4.0