Lydia: Compositional LTL_f/LDL_f Synthesis

Marco Favorito

Bank of Italy marco.favorito@bancaditalia.it https://marcofavorito.me

Joint work with Giuseppe De Giacomo (Published at ICAPS 2021)

The problem: LDL_f Synthesis (De Giacomo and M. Vardi, 2015)

- Alphabet partitioned in environment propositions and agent propositions
- Specification language (LDL_f), desirable (finite-trace) program executions
- Output: program procedure interacting with the environment, generated executions satisfy the LDL_f specification

Automata-theoretic solution:

- **Compute the DFA of the LDL**_f formula φ (double-exponential)
- Solve the DFA game (linear)

The problem: LDL_f Synthesis (De Giacomo and M. Vardi, 2015)

- Alphabet partitioned in environment propositions and agent propositions
- Specification language (LDL_f), desirable (finite-trace) program executions
- Output: program procedure interacting with the environment, generated executions satisfy the LDL_f specification

Automata-theoretic solution:

- **Compute the DFA of the LDL**_f formula φ (double-exponential)
- Solve the DFA game (linear)

Focus: LDL_f-to-DFA construction Given an LDL_f formula φ , compute a DFA \mathcal{A} such that:

$$orall \pi.\pi\modelsarphi\iff\pi\in\mathcal{L}(\mathcal{A})$$

Related work

(De Giacomo and M. Vardi, 2013):

(Zhu et al., 2017; Bansal et al., 2020):

- Fully compositional
 - Like (Bansal et al., 2020), but to the extreme
- Bottom-up approach
 - Against "top-down" approach of AFA-NFA-DFA
- non-elementary (instead of best theoretical bound of two-exp)
 - Yet, it works fairly well in practice
 - MONA too implements a non-elementary procedure!

How it works, in a nutshell

- Mapping from LDL_f operators to DFA operations
- Inductively apply these mappings
- If we encounter LTL_f formulae, translate them in LDL_f

Let $\varphi = [a^*] \langle b \rangle tt$

```
Let \varphi = [a^*] \langle b \rangle tt

Compute A_{tt}
```


Let $\varphi = [a^*] \langle b \rangle tt$ Compute $\mathcal{A}_{\langle b \rangle tt}$

Let $\varphi = [a^*] \langle b \rangle tt$ (remember: $[\rho] \varphi \equiv \neg \langle \rho \rangle \neg \varphi$) Compute $\overline{\mathcal{A}_{\langle b \rangle tt}} = \mathcal{A}_{[b]ff}$

Let $\varphi = [a^*] \langle b \rangle tt$ Compute $\mathcal{A}_{\langle a \rangle end}$

Let $\varphi = [a^*] \langle b \rangle tt$

Compute Kleene closure of $\mathcal{A}_{\langle a \rangle end}$, \mathcal{A}_{a^*}

Let $\varphi = [a^*] \langle b \rangle tt$

Concatenate A_{a^*} and $A_{[b]ff}$ (note: $\bar{e}a \wedge eb = \bot$)

Let $\varphi = [a^*] \langle b \rangle tt$ Do EPROJECT $(\mathcal{A}'_{\langle a^* \rangle [b]ff}, i_e)$

Let
$$\varphi = [a^*] \langle b \rangle tt$$

 $\blacksquare \overline{\mathcal{A}_{\langle a^* \rangle [b]ff}} = \mathcal{A}_{[a^*] \langle b \rangle tt}$

Implementation

The technique has been implemented in a tool called Lydia¹:

- It relies on MONA (Henriksen et al., 1995) for DFA representation and operations;
- It is integrated with **Syft+** for LTL_f/LDL_f synthesis;
- Uses CUDD to find minimal models;
- It is able to parse both LDL_f and LTL_f formulae using Flex/Bison.

Marco Favorito (Bank of Italy)

¹https://github.com/whitemech/lydia

MONA is a tool for translating Weak monadic Second-order theory of 1 Successor (WS1S) to DFAs.

Lydia only uses the MONA DFA library. Features:

- manual construction of a DFA
- boolean operations between DFAs
- other operations: minimization, projections

The MONA DFA library (cont.)

DFAs in MONA are represented by shared, multi-terminal BDDs.

The representation is *explicit* in the state space, and *symbolic* in the transitions.

Experiments

Tools:

- Lydia/LydiaSyn
- MONA/Syft+
- Lisa (only explicit, only symbolic, hybrid) (Bansal et al., 2020)

Datasets:

- Random conjunctions, 400 formulae (Zhu et al., 2017)
- Single counters, 20 formulae (Tabajara and M. Y. Vardi, 2019)
- Double counters, 10 formulae (Tabajara and M. Y. Vardi, 2019)
- Nim game, 24 formulae (Tabajara and M. Y. Vardi, 2019)

DFA Construction (single/double counters)

DFA Construction (Nim game)

Benchmark					
Name	Lydia	Mona-	Lisa-	Lisa-	Lisa
		based	explicit	symbolic	
nim_1_1	0.01	0.15	0.07	0.07	0.07
nim_1_2	0.02	_	0.15	0.16	0.16
nim_1_3	0.05	_	0.07	1.43	0.06
nim_1_4	0.09	_	0.14	267.23	0.13
nim_1_5	0.17	_	0.27	—	0.25
nim_1_6	0.30	_	0.63	—	0.54
nim_1_7	0.54	_	1.20	_	1.02
nim_1_8	0.82	_	1.87	—	1.83
nim_2_1	0.05	_	0.14	1.49	0.10
nim_2_2	0.20	_	0.84	—	0.81
nim_2_3	1.47	_	4.95	_	4.95
nim_2_4	7.00	_	26.07	—	24.33
nim_2_5	34.86	_	125.56	—	108.86
nim_2_6	114.87	_		—	—
nim_2_7	_	_	_	—	_
nim_3_1	0.40	_	3.15	—	2.67
nim_3_2	9.93	_	84.34	_	78.31
nim_3_3	142.16	_	_	—	_
nim_3_4	_	_		_	_
nim_4_1	8.97	_	110.10	—	109.79
nim_4_2	_	-	_	_	_
nim_5_1	243.62		_	—	
nim_5_2	_	_	_	_	_

Table 1: Running time (in seconds) for DFA construction on the Nim benchmark set. In bold the minimum running time for a given benchmark. — means time/memout. Timeout at 300 sec.

Marco Favorito (Bank of Italy)

Lydia: Compositional LTL_f/LDL_f Synthesis

DFA Construction, cactus plot

Marco Favorito (Bank of Italy)

Lydia: Compositional LTL_f/LDL_f Synthesis

LTL_f Synthesis

Conclusions and Future works

Better than end-to-end MONA

- Working directly with the right formalism gives better performances
- Fully compositional is (often) better
 - · Lisa decomposes only in the outermost conjunction
- Heuristics are crucial for a scalable implementation
 - Agressive minimization (as in MONA)
 - Smallest products first (as in (Bansal et al., 2020))

Future works:

- Direct translations from LTL_f
- Direct translations for Past formulae (PLTL_f and PLDL_f)
- Use a hybrid approach

Open source project: https://github.com/whitemech/lydia

Marco Favorito (Bank of Italy)

References

- Bansal, Suguman et al. "Hybrid compositional reasoning for reactive synthesis from finite-horizon specifications". In: AAAI. 2020, pp. 9766–9774.
- De Giacomo, Giuseppe and Moshe Y. Vardi. "Linear Temporal Logic and Linear Dynamic Logic on Finite Traces". In: *IJCAI*. 2013, pp. 854–860.
- . "Synthesis for LTL and LDL on Finite Traces". In: IJCAI. 2015, pp. 1558–1564.
- Henriksen, Jesper G. et al. "Mona: Monadic second-order logic in practice". In: 1995, pp. 89–110.
- Tabajara, Lucas Martinelli and Moshe Y Vardi. "Partitioning Techniques in LTLf Synthesis.". In: *IJCAI*. 2019, pp. 5599–5606.
- Zhu, Shufang et al. "A symbolic approach to safety LTL synthesis". In: HVC. 2017.