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Motivation: AI

We are interested in building
AI Agents

Linear temporal logics on finite traces are a fantastic tool for this enterprise, because it gives computational concreteness
to the famous Logics-Automata-Games triangle from Formal Methods:

DFAsReach
Games

LTLf

Logic

Games Automata
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Motivation: AI

Courtesy of Carlo Gezzi

See Anneline Daggelinckx’s talk!
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Motivation: AI

Artificial Intelligence and in particular the Knowledge Representation and Planning community well aware of temporal
logics since a long time.

Foundations borrowed from temporal logics studied in CS, in particular:
Linear Temporal Logic (ltl) [Pnueli77].

However:
• Often, ltl is interpreted on finite trajectories/traces.

• MetateM: logic programming in LTL [BarringerFisherGabbayGoughOwens89] - infinite/finite
• Temporally extended goals [BacchusKabanza96] - infinite/finite
• Temporal constraints on trajectories [GereviniHslumLongSaettiDimopoulos09 - PDDL3.0 2009] - finite
• Declarative control knowledge on trajectories [BaierMcIlraith06] - finite
• Procedural control knowledge on trajectories [BaierFrizMcIlraith07] - finite
• Temporal specification in planning domains [CalvaneseDeGiacomoVardi02] - infinite
• Planning via model checking - infinite

I Branching time (CTL) [CimattiGiunchigliaGiunchigliaTraverso97]
I Linear time (LTL) [DeGiacomoVardi99]
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Motivation: AI

See Yves Lesperance’s talk!
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Motivation: BPM

Business Process Management community has proposed a declarative approach to business process modeling based on ltl
on finite traces: Declare

Basic idea: Drop explicit representation of processes, and ltl formulas specify the allowed finite traces.
[VanDerAalstPesic06] [PesicBovsnavkiDraganVanDerAalst10].178 M. Pesic

forbidden

optional

allowed

possible

(a) forbidden, optional and allowed
in business processes

(b) procedural workflow

control-flow

(c) declarative workflow

constraints

constraints constraints

constraints

Fig. 6.3 Declarative vs. procedural workflows

the constraint-based approach can provide for all types of flexibility listed in the
previous paragraph. A concrete implementation that enables creating decomposi-
tions of YAWL (e.g., procedural) and declarative models is presented in Chap. 12 of
this book. Figure 6.3 illustrates the difference between procedural and declarative
process models.

Starting point for the declarative constraint-based approach is the observation
that only three types of “execution alternatives” can exist in a process: (1) forbidden
alternatives should never occur in practice, (2) optional alternatives are allowed, but
should be avoided in most of the cases, and (3) allowed alternatives can be executed
without any concerns. This is illustrated in Fig. 6.3a. Procedural workflow models
(e.g., YAWL nets) explicitly specify the ordering of tasks, that is, the control-flow
of a workflow. In other words, during the execution of the model, it will be possi-
ble to execute a process only as explicitly specified in the control-flow, as shown in
Fig. 6.3b. Because of the high level of unpredictability of processes, many allowed
and optional executions often cannot be anticipated and explicitly included in the
control-flow. Therefore, in traditional systems it is not possible to execute a sub-
stantial part of all potentially allowed alternatives, that is, users are unnecessarily
limited in their work and, hence, these systems lack flexibility by design.

Our declarative constraint-based approach to workflow models makes it pos-
sible to execute both allowed and optional alternatives in processes. Instead of
explicitly specifying the procedure, constraint workflow models are declarative:
they specify constraints, that is, rules that should be followed during the execution,
as shown in Fig. 6.3c. Moreover, there are two types of constraints: (1) mandatory
constraints focus on the forbidden alternatives, and (2) optional constraints specify
the optional ones. Constraint-based models are declarative: anything that does not
violate mandatory constraints is possible during execution. The declarative nature of

See Marco Montali’s talk!
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ltl over finite traces

ltlf : the language (in symbols)
Same syntax as standard ltl but interpreted over finite traces

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⊃ ϕ2 | #ϕ |  ϕ | 3ϕ | 2ϕ | ϕ1 U ϕ2

• A: atomic propositions
• ¬ϕ, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⊃ ϕ2: boolean connectives
• #ϕ: “(next step exists and) at next step (of the trace) ϕ holds”
•  ϕ: “if next step exists then at next step ϕ holds” (weak next) ( ϕ ≡ ¬#¬ϕ)
• Last .= ¬ false: denotes last instant of trace.
• 3ϕ: “ϕ will eventually hold” (3ϕ ≡ trueU ϕ)
• 2ϕ: “from current till last instant ϕ will always hold” (2ϕ ≡ ¬3¬ϕ)
• ϕ1 U ϕ2:“eventually ϕ2 holds, and ϕ1 holds until ϕ2 does”
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ltl over finite traces

ltlf : the language (in words)
Note: we do not need fancy symbols we can use english words instead:

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⊃ ϕ2 | nextϕ | wnextϕ | eventuallyϕ | alwaysϕ | ϕ1 untilϕ2

In symbols
3A eventuallyA “eventually A” reachability
2A alwaysA “always A” safety
2(A ⊃ 3B) always(A ⊃ eventuallyB) “always if A then eventually B” reactiveness
AU B A untilB “A until B” strong until – stronger than English until
AU B ∨ 2A A untilB ∨ alwaysA “A until B” weak until – just like English until

But see the paper
Ben Greenman, Sam Saarinen, Tim Nelson, Shriram Krishnamurthi. Little Tricky Logic: Misconceptions in the
Understanding of LTL, Art Sci. Eng. Program. 7(2), 2023

Ben will test how ltlf is tricky as well on us during this workshop :-)
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ltlf Examples

Example
Consider the following formula:

3A

• On infinite traces:

... A ...   

• On finite traces:

 A
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ltlf Examples

Example
Consider the following formula:

2A

• On infinite traces:

...AA A A A A A A A AA ...A AA

• On finite traces:

AA A A A A A A A AA
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ltlf Examples

Example
Consider the following formula:

3#A

• On infinite traces:

... A ...   

• On finite traces:

 A
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ltlf Examples

Example
Consider the following formula:

2#A

• On infinite traces:

...A A A A A A A A AA ...A AA

• On finite traces:

None!!!
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ltlf Examples

Example
Consider the following formula:

2 A

• On infinite traces (in ltl  A must be replaced by ¬#¬A which is equivalent to #A):

...A A A A A A A A AA ...A AA

• On finite traces:

A A A A A A A A AA
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Capturing STRIPS

Example (Capturing STRIPS Planning as ltlf SAT)
• For each action A ∈ Act with precondition ϕ and effects

∧
F∈Add(A) F ∧

∧
F∈Del(A) ¬F

I 2(#A ⊃ ϕ): if next action A has occurred (denoted by a proposition A) then now precondition ϕ must be true;

I 2(#A ⊃ #(
∧
F∈Add(A)

F ∧
∧
F∈Del(A)

¬F )): when A occurs, its effects are true;

I 2(#A ⊃
∧
F 6∈Add(A)∪Del(A)

(F ≡ #F )): everything not in add or delete list, remains unchanged.

• At every step one and only one action is executed: 2((
∨
A∈Act A) ∧ (

∧
Ai,Aj∈Act,Ai 6=Aj

Ai ⊃ ¬Aj)).

• Initial situation is described as the conjunction of propositions Init that are true/false at the beginning of the trace:∧
F∈Init F ∧

∧
F 6∈Init ¬F .

• Finally goal ϕg eventually holds: 3ϕg .

Thm: A plan exists iff the ltlf formula is SAT.
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Capturing SitCalc

Example (Propositional SitCalc Basic Action Theories in ltlf )
• Successor state axiom (instantiated for each action A) F (do(A, s)) ≡ ϕ+(s)∨ (F (s)∧¬ϕ−(s)) can be fully captured:

2(#A ⊃ (#F ≡ ϕ+ ∨ F ∧ ¬ϕ−).

• Precondition axioms Poss(A, s) ≡ ϕA(s) can only be captured in the part saying “if A happens then its precondition
must be true”:

2(#A ⊃ ϕA).

The part saying “if the precondition ϕA holds then action A is possible” cannot be expressed in linear time
formalisms, since they talk about traces that actually happen not the ones that are possible.
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Examples from Declare

See Luca Geatti’s talk!
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Weak Until and Release in ltlf

Weak Until
Weak Until, denoted by ϕWψ says that “ϕ holds until ψ holds, however it is fine for ψ not to hold at all, and in that case
ϕ holds forever”. Note this is the typical interpretation of the word “until” in English. Formally it is defined as:

ϕ1Wϕ2
.= (ϕ1 U ϕ2) ∨ 2ϕ1

Release
Release denoted by ϕRψ says that “ϕ releases ψ from holding forever”. It can be defined as:

ϕ1Rϕ2
.= ϕ1W(ϕ1 ∧ ϕ2)

The following holds:
• ϕ1Rϕ1 ≡ ¬(¬ϕ1 U ¬ϕ2)
• it also holds that
ϕ1Uϕ2 ≡ ¬(¬ϕ1R¬ϕ2) (Release is dual of Until)
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Fixpoint Equivalences in ltlf

Introduced since the early days of ltl in CS, for connection with fixpoint theory and tableaux expansion rules,
[GabbayPnueliShelahStavi80],[Manna82],[Emerson90]

• 3ϕ ≡ ϕ ∨#(3ϕ) –then choose lfp

• 2ϕ ≡ ϕ ∧ (2ϕ) –then choose gfp (Note: in ltlf , differently from ltl, 2ϕ ≡ ϕ ∧ #(2ϕ) does not hold.)

• ϕ1 U ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧#(ϕ1 U ϕ2)) –then choose lfp

• ϕ1Rϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ (ϕ1Rϕ2)) –then choose gfp
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Fixpoint Equivalences in ltlf and “next normal form”
By recursively applying fixpoint equivalences, considering as base case propositions and formulas prefixed with # or  , i.e.:

nextNF (A) = A
nextNF (#ϕ) = #ϕ
nextNF ( ϕ) =  ϕ
nextNF (¬ϕ) = ¬nextNF (ϕ)

nextNF (ϕ1 ∧ ϕ2) = nextNF (ϕ) ∧ nextNF (ϕ2)
nextNF (ϕ1 ∨ ϕ2) = nextNF (ϕ) ∨ nextNF (ϕ2)

nextNF (3ϕ = nextNF (ϕ) ∨#(3ϕ)
nextNF (2ϕ) = nextNF (ϕ) ∧ (2ϕ)

nextNF (ϕ1 U ϕ2) = nextNF (ϕ2) ∨ (nextNF (ϕ1) ∧#(ϕ1 U ϕ2))
nextNF (ϕ1Rϕ2) = nextNF (ϕ2) ∧ (nextNF (ϕ1) ∨ (ϕ1Rϕ2))

we get that every formula ϕ in ltlf (or ltl, ldlf , Pure Past ltl) can be decomposed is equivalent to a formula of the form

ϕ ≡ Bool(A,#ϕ, ϕ)

that is ϕ gets partitioned into a part that to be evaluated NOW and a part that to be evaluated NEXT.

This observation is at the base of many results, including, e.g.:
• translation of ltl into alternating automata [Vardi95]
• Bacchus&Kabanza’s progression algorithm for ltl [BacchusKabanza96].
• Super-good algorithms for Pure-Past LTL [DeGiacomoFuggittiFavoritoRubin20],[BonassiDeGiacomoFuggittiGereviniScala22].
• State-of-the-art symbolic tablaux algorithms implemente in BLACK for Pure-Past LTL [GeattiGiganteMontanari21]

See Francesco Fuggitti’s talk on Pure-Past ltl in planning!
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Blurring of ltlf and ltl
Often, ltlf has been blurred with ltl, generating confusion in the AI and BPM literature of early 2000’s.

From [Edelkamp2006]
“We can cast the Büchi automaton as an NFA, which accepts a word if it terminates in an accepting state.”

From [GereviniEtAl2009]
“Since PDDL temporal constraints are normally evaluated over finite trajectories, the Büchi acceptance condition (an
accepting state is visited infinitely often) reduces to the standard acceptance condition that the automaton is in an
accepting state at the end of the trajectory.”

From original Declare paper [VanDerAalstPesic06]:
We use the original (ltl) algorithm . . . , but . . . we specify that each execution of the model will eventually end.
• We introduce an “invisible” activity end, which represents the ending activity in the model.
• We use this activity to specify that the service will end - the termination constraint. This constraint has the

LTL formula 3end ∧ 2(end ⊃ #end).”
• No other activity will hold when end holds

–since only one activity (proposition) true at each point in time.

These descriptions are misleading, and, if taken literally, wrong!
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Blurring of ltlf and ltl

From [DeGiacomoDeMasellisMontali14]:
• Many ltl/ltlf formulas (but not all) are insensitive to infiniteness: roughly speaking, even blurring the distinction
between interpreting them on finite traces or on infinite traces, they maintain their meaning.

I All Declare patterns, but one used rarely, are insensitive to infiniteness
I Virtually all typical action domain specification in KR and Planning
I All PDDL 3.0 trajectory constraints requiring at least one proposition to be true in propositional formulas, but (always φ)

• This, may help explaining why such wrong intuition has remained the basis for algorithms in systems for years.

Concerns about blurring infinite and finite traces was already rised by [BauerHaslum10], where correctness conditions are
considered in extending finite traces by repeating at infinitum the propositional assignment in the last element of the finite
trace.

Research rationale
While the blurring between infinite and finite traces has been of help as a jump start, AI and BPM are now sharpening
focus on the finite trace assumption.
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ltlf and Automata

Key point
ltlf formulas can be translated into a finite-state automaton on finite words Aϕ such that:

t |= ϕ iff t ∈ L(Aϕ)

• in linear time if Aϕ is an Alternating Finite-state Automata (afa);
• in exponential time if Aϕ is an Nondeterministic Finite-state Automaton (nfa);
• in double exponential time if Aϕ is an Deterministic Finite-state Automaton (dfa).

We can compile reasoning into automata based procedures!
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ltlf and Automata
Summary of automata theory on finite sequences:
• nfa’s and afa’s are mathematical devices.
• dfa’s, instead, can be implemented and run.

DFA

NFA

AFA

and, or, not

and, or, exists not

exists

and, or, not

exists

reverse

reverse

reverse

seq, star

seq, star

seq, star

nondet

det

not

DFA nonemptiness in linear time
 (NLOGSPACE-complete)

NFA nonemptiness in linear time 
(NLOGSPACE-complete)

AFA nonemptiness in exptime
(PSPACE-complete)
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ltlf and Automata

Key point
ltlf formulas can be translated into a finite-state automaton on finite words Aϕ such that:

t |= ϕ iff t ∈ L(Aϕ)

• in linear time if Aϕ is an Alternating Finite-state Automata (afa);
• in exponential time if Aϕ is an Nondeterministic Finite-state Automaton (nfa);
• in double exponential time if Aϕ is an Deterministic Finite-state Automaton (dfa).

We can compile reasoning into automata based procedures!
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ltlf and Automata
Alternating Automata on Finite Words (afa)
A = (2P , Q, q0, δ, F )
• 2P alphabet
• Q is a finite nonempty set of states
• q0 is the initial state
• F is a set of accepting states
• δ is a transition function δ : Q× 2P → B+(Q), where B+(Q) is a set of positive boolean formulas whose atoms are
states of Q.

afa run
Given an input word a0, a1, . . . an−1, an afa run of an afa is a tree (rather than a sequence) labelled by states of afa
such that
• root is labelled by q0;
• if node x at level i is labelled by a state q and δ(q, ai) = Θ, then either Θ is true or some P ⊆ Q satisfies Θ and x
has a child for each element in P .

A run is accepting if all leaves at depth n are labeled by states in F . Thus, a branch in an accepting run has to hit the
true transition or hit an accepting state after reading all the input word a0, a1, . . . , an−1.

(We adopt notation of “An Automata-Theoretic Approach to Linear Temporal Logic” by Moshe Vardi, 1996).
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ltlf and Automata

afa Aϕ associated with an ltlf formula ϕ (in NNF)
Aϕ = (2P ,CLϕ, "ϕ", δ, F ) where
• 2P is the alphabet (P includes a special proposition Last to denote the last element of the trace),
• CLϕ is the state set
• "ϕ" is the initial state
• F = ∅ is the set of final states, which is empty
• δ is the transition function, defined as:

δ("A",Π) = true if A ∈ Π
δ("A",Π) = false if A 6∈ Π
δ("¬A",Π) = false if A ∈ Π
δ("¬A",Π) = true if A 6∈ Π
δ("ϕ1 ∧ ϕ2",Π) = δ("ϕ1",Π) ∧ δ("ϕ2",Π)
δ("ϕ1 ∨ ϕ2",Π) = δ("ϕ1",Π) ∨ δ("ϕ2",Π)

δ("#ϕ",Π) =
{

"ϕ" if Last 6∈ Π
false if Last ∈ Π

δ("3ϕ",Π) = δ("ϕ",Π) ∨ δ("#3ϕ",Π)
δ("ϕ1 U ϕ2",Π) = δ("ϕ2",Π) ∨ (δ("ϕ1",Π) ∧ δ("#(ϕ1 U ϕ2)",Π))

δ(" ϕ",Π) =
{

"ϕ" if Last 6∈ Π
true if Last ∈ Π

δ("2ϕ",Π) = δ("ϕ",Π) ∧ δ(" 2ϕ",Π)
δ("ϕ1Rϕ2",Π) = δ("ϕ2",Π) ∧ (δ("ϕ1",Π) ∨ δ(" (ϕ1Rϕ2)",Π))
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Negation Normal Form for ltlf

We put the ltlf formula in NNF, because afa’s transitions return positive boolean combinations of states (B+(Q)).

NNF
Negation Normal Form for ltlf : for a ∈ AP

ϕ ::= true | false | A | ¬A | ϕ ∧ ϕ | ϕ ∨ ϕ | #ϕ |  ϕ | 3ϕ | 2ϕ | ϕU ϕ | ϕRϕ

Each ltlf formula ϕ admits an equivalent in NNF denoted nnf (ϕ), which is obtained in linear time in the size formula by pushing negation
all the way, exploiting duals through the follow equivalence:
• ¬¬ϕ ≡ ϕ
• ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

• ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

• ¬#ϕ ≡  ¬ϕ
• ¬ ϕ ≡ #¬ϕ
• ¬3ϕ ≡ 2¬ϕ
• ¬2ϕ ≡ 3¬ϕ
• ¬(ϕ1 U ϕ1) ≡ ¬ϕ1R¬ϕ2

• ¬(ϕ1Rϕ1) ≡ ¬ϕ1 U ¬ϕ2
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States of the afa Aϕ

The states of Aϕ are the subformulas of ϕ once expanded using the fixpoint equivalence.
This set of formulas is called the syntactic closure of ϕ.

Syntactic Closure of an ltlf formula
The syntactic closure, aka “Fisher-Ladner closure”, CLϕ of an ltlf
formula ϕ is a set of ltlf formulas inductively defined as follows:

ϕ ∈ CLϕ
¬A ∈ CLϕ if A ∈ CLϕ
A ∈ CLϕ if ¬A ∈ CLϕ
ϕ1 ∧ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
ϕ1 ∨ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
#ϕ ∈ CLϕ implies ϕ ∈ CLϕ
3ϕ ∈ CLϕ implies ϕ,#3ϕ ∈ CLϕ
ϕ1 U ϕ2 ∈ CLϕ implies ϕ1, ϕ2,#(ϕ1 U ϕ2) ∈ CLϕ
 ϕ ∈ CLϕ implies ϕ ∈ CLϕ
2ϕ ∈ CLϕ implies ϕ, 2ϕ ∈ CLϕ
ϕ1Rϕ2 ∈ CLϕ implies ϕ1, ϕ2, (ϕ1Rϕ2) ∈ CLϕ

Observe that the cardinality of CLϕ is linear in the size of ϕ.

ltlf fixpoint equations
• 3ϕ ≡ ϕ ∨#(3ϕ)
• 2ϕ ≡ ϕ ∧ (2ϕ)
• ϕ1 U ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧#(ϕ1 U ϕ2))
• ϕ1Rϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ (ϕ1Rϕ2))
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ltlf and Automata
afa Aϕ associated with an ltlf formula ϕ (in NNF)
Aϕ = (2P ,CLϕ, "ϕ", δ, F ) where
• 2P is the alphabet,
• CLϕ is the state set,
• "ϕ" is the initial state
• F = ∅ is the empty set of final states
• δ is the transition function

Transition function δ
δ("A",Π) = true if A ∈ Π
δ("A",Π) = false if A 6∈ Π
δ("¬A",Π) = false if A ∈ Π
δ("¬A",Π) = true if A 6∈ Π
δ("ϕ1 ∧ ϕ2",Π) = δ("ϕ1",Π) ∧ δ("ϕ2",Π)
δ("ϕ1 ∨ ϕ2",Π) = δ("ϕ1",Π) ∨ δ("ϕ2",Π)

δ("#ϕ",Π) =
{

"ϕ" if Last 6∈ Π
false if Last ∈ Π

δ("3ϕ",Π) = δ("ϕ",Π) ∨ δ("#3ϕ",Π)
δ("ϕ1 U ϕ2",Π) = δ("ϕ2",Π) ∨ (δ("ϕ1",Π) ∧ δ("#(ϕ1 U ϕ2)",Π))

δ(" ϕ",Π) =
{

"ϕ" if Last 6∈ Π
true if Last ∈ Π

δ("2ϕ",Π) = δ("ϕ",Π) ∧ δ(" 2ϕ",Π)
δ("ϕ1Rϕ2",Π) = δ("ϕ2",Π) ∧ (δ("ϕ1",Π) ∨ δ(" (ϕ1Rϕ2)",Π))

ltlf fixpoint equations
• 3ϕ ≡ ϕ ∨#(3ϕ)
• 2ϕ ≡ ϕ ∧ (2ϕ)
• ϕ1 U ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧#(ϕ1 U ϕ2))
• ϕ1Rϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ (ϕ1Rϕ2))
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ltlf and Automata
afas can be transformed into nfa with standard algorithms in exponential time.

nfa Aϕ associated with an ltlf formula ϕ (in NNF)

δ transition function

δ("A",Π) = true if A ∈ Π
δ("A",Π) = false if A 6∈ Π
δ("¬A",Π) = false if A ∈ Π
δ("¬A",Π) = true if A 6∈ Π
δ("ϕ1 ∧ ϕ2",Π) = δ("ϕ1",Π) ∧ δ("ϕ2",Π)
δ("ϕ1 ∨ ϕ2",Π) = δ("ϕ1",Π) ∨ δ("ϕ2",Π)

δ("#ϕ",Π) =

{
"ϕ" if Last 6∈ Π
false if Last ∈ Π

δ("3ϕ",Π) = δ("ϕ",Π) ∨ δ("#3ϕ",Π)
δ("ϕ1 U ϕ2",Π) = δ("ϕ2",Π) ∨ (δ("ϕ1",Π) ∧ δ("#(ϕ1 U ϕ2)",Π))

δ(" ϕ",Π) =

{
"ϕ" if Last 6∈ Π
true if Last ∈ Π

δ("2ϕ",Π) = δ("ϕ",Π) ∧ δ(" 2ϕ",Π)
δ("ϕ1Rϕ2",Π) = δ("ϕ2",Π) ∧ (δ("ϕ1",Π) ∨ δ(" (ϕ1Rϕ2)",Π))

afa2nfa transformation
algorithm ltlf 2nfa
input ltlf formula ϕ

output nfa Aϕ = (2P ,S, {s0}, %, {sf})
s0 ← {"ϕ"} . single initial state
sf ← ∅ . single final state
S ← {s0, sf}, % ← ∅
while (S or % change) do

if(q ∈ S and q′ |=
∧

("ψ"∈q)
δ("ψ",Π))

S ← S ∪ {q′} . update set of states
% ← % ∪ {(q,Π, q′)} . update transition relation

Using function δ we can build the nfa Aϕ of an ltlf formula ϕ in a forward fashion. States of Aϕ are sets of atoms (recall that each atom is quoted ϕ subformulas) to be interpreted as a
conjunction; the empty conjunction ∅ stands for true.
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ltlf and automata
Key point
ltlf formulas can be translated into a finite-state automaton on finite words Aϕ such that:

t |= ϕ iff t ∈ L(Aϕ)

• in linear time if Aϕ is an Alternating Finite-state Automata (afa);
• in exponential time if Aϕ is an Nondeterministic Finite-state Automaton (nfa);
• in double exponential time if Aϕ is an Deterministic Finite-state Automaton (dfa).

Example (Automata for some ltlf formulas)

3G
10

true

G

not G

2G
0

G

2(A ⊃ #3B)
10

not B

A

B

not A

¬B U A ∨ 2¬B “A before B”
10

true

A

not B
not A

(online software for LTLf2DFA: http: // ltlf2dfa. diag. uniroma1. it )
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ltlf to Automata Techniques
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ltlf Reasoning

ltlf Satisfiability (ϕ SAT)
1: Given ltlf formula ϕ
2: Compute afa for ϕ (linear)
3: Compute corresponding nfa (exponential)
4: Check nfa for nonemptiness (NLOGSPACE)
5: Return result of check

ltlf Validity (ϕ VAL)
1: Given ltlf formula ϕ
2: Compute afa for ¬ϕ (linear)
3: Compute corresponding nfa (exponential)
4: Check nfa for nonemptiness (NLOGSPACE)
5: Return complemented result of check

ltlf Logical Implication (Γ |= ϕ)
1: Given ltlf formulas Γ and ϕ
2: Compute afa for Γ ∧ ¬ϕ (linear)
3: Compute corresponding nfa (exponential)
4: Check nfa for nonemptiness (NLOGSPACE)
5: Return complemented result of check

Thm: All the above reasoning tasks are PSPACE-complete. (On-the-fly construction of nfa while checking nonemptiness.)
As for the infinite traces.
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ltlf Model Checking

Given a transition system T , check that all finite executions allowed by T satisfy an ltlf specification ϕ.

ltlf model checking algorithm
1: Given Transition System T and ltlf formula ϕ
2: Compute the nfa AT of T (linear in T , in fact constant!)
3: Compute afa for ¬ϕ (linear in ϕ)
4: Compute corresponding nfa A¬ϕ (exponential in ϕ)
5: Compute nfa AT ×A¬ϕ for (AT ∧ A¬ϕ) (polynomial)
6: Check resulting nfa AT ×A¬ϕ for nonemptiness (NLOGSPACE)
7: Return complemented result of check

Thm: Verification is PSPACE-complete, and most importantly polynomial in the transition system.
The same results holds for ltl on infinite traces.
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Model Checking

Question: What kind of model checking properties can be expressed in ltlf?

Answer: All ltl safety properties! (And nothing else.)

Maybe ltlf is not that interesting for model checking ... but it is super-interesting for synthesis!
(Remember we are interested in AI agents!!!)
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ltlf Synthesis Under Full Controllability (BPM)
This is a first, very simple, form of program synthesis!

Synthesis under full controllability
Given declarative specification in terms of ltlf constraints, extract process/program/domain description/transition system
that captures exactly specification.

(From Declare [PesicBovsnavkiDraganVanDerAalst10])
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ltlf Synthesis Under Full Controllability (BPM)
Process corresponding to ltlf specification always exists for finite traces!
Any ltlf specification correspond to exactly one process: the corresponding minimal dfa!

1: Given ltlf formula ϕ
2: Compute afa for ϕ (linear in ϕ)
3: Compute corresponding nfa (exponential in ϕ)
4: Compute corresponding dfa (exponential in nfa)
5: Trim dfa to avoid dead ends (polynomial)
6: Optional: Minimize dfa (polynomial)
7: Return resulting dfa

IMPORTANT
• This is a BEAUTIFUL RESULT: We go from purely declarative to fully procedural!
• It relies on the possibility of obtaining a deterministic automaton, a dfa, which is a machine, and hence a process.

[AbadiLamportWolper89]
• Does NOT hold in the infinite trace settings!

Example (Over infinite traces the following ltl formulas do not correspond to any process)

Consider the ltl formula 32A and its Büchi Automaton:

10

A

A

True
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Program Synthesis

Program Synthesis
• Basic Idea: “Mechanical translation of human-understandable task specifications to a program that is known to meet
the specifications.” [Vardi - The Siren Song of Temporal Synthesis 2018]
• Classical vs. Reactive Synthesis:

I Classical: Synthesize transformational programs
[Green1969], [WaldingerLee1969], [Manna and Waldinger1980]

I Reactive: Synthesize programs for interactive/reactive ongoing computations (protocols, controllers, robots, etc.)
[Church1963], [AbadiLamportWolper1989], [PnueliRosner1989]

Reactive Synthesis
• Reactive synthesis is equipped with a elegant and comprehensive theory

[Finkbeiner2018],[EhlersLafortuneTripakisVardi2017]

• Reactive synthesis is conceptually related to planning in nondeterministic domains
[DeGiacomoVardi2015], [DeGiacomoRubin2018], [CamachoMuiseBaierMcIlraith2018]
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Agent in Environment

Agent

Environment
X

Y

Inputs and outputs
• The agent receives input X from the environment.
• The agent sends output Y to the environment.
• Input X can be fluents, features, program input, etc.
• Output Y can be actions, control instructions, program outputs, etc.
• Input is uncontrollable by the agent (it is under the control of the environment).
• Output is controllable by the agent.
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Synthesis as a Game

Agent

Environment
X

Y

Game View
Agent is playing a game with environment, with the ltlf/ltl specifications being the winning condition.
• Agent chooses controllable output Y ∈ 2Y

• Environment chooses uncontrollable input X ∈ 2X

• Round: agent and environment set their values
• Play: finite trace τ over (X ∪ Y)
• Agent decides when to stop
• Specification: ltlf formula ϕ
• Agent wins τ |= ϕ
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Synthesis as a Game
Game Rounds
Agent is playing a game with environment, with the ltlf /ltl specifications being the
winning condition.
• Agent chooses controllable output Y ∈ 2Y

• Environment chooses uncontrollable input X ∈ 2X

• Round: agent and environment set their values
I Pair output and resulting input

⇐=

(agent action and environment reaction)
I Pair input and next output

(environment state and next agent action)
• Play: finite trace τ over (X ∪ Y)
• Agent decides when to stop
• Specification: ltlf formula ϕ
• Agent wins τ |= ϕ

Agent

Environment

1/2

X

Y

2/2

Agent

Environment

2/2

X

Y

1/2

Pair actions and states in a time instant (reminder)
Decide how we need to pair actions and states in a time instant
• Pair the agent action and the resulting state, (in fact labeling of the state) of the environment

⇐=

The propositional representation a for an action a will stand for “action a just executed”.

• Pair current environment (labeling of the) state and the next action instructed by the agent

The propositional representation a for an action a will stand for “action a just instructed to be executed next”.
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Agent strategie

Agent

Environment
X

Y

Agent strategies
Agent strategy (also called, “plan”, “policy”, “protocol”, “process”, “program”, “behavior”):

σa : (2X )∗ → 2Y

where
• (2X )∗ denotes the history of inputs observed so far by the agent

(a finite sequence of fluents configurations)
• 2Y denotes the next output of the agent

Every program/process has this form! [AbadiLamportWolper89].
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Syntesis from ltlf Specifications

Synthesis from ltlf Specifications
Given a ltlf formula ϕ over a set P of propositions partitioned into two disjoint sets:
• X controlled by environment
• Y controlled by agent

Find an agent strategy σa to set the values of Y in such a way that for all possible values of X , controlled by the
environment, the ltlf formula ϕ can be made true.

Algorithm for ltlf synthesis
1: Given ltlf formula ϕ
2: Compute afa for ϕ (linear)
2: Compute corresponding nfa (exponential)
3: Determinize nfa to dfa (exponential)
4: Synthesize winning strategy for dfa game (linear)
5: Return strategy

Thm: ltlf synthesis is 2-EXPTIME-complete.
Same as for infinite traces
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DFA Games
dfa games
A dfa game G = (2X∪Y , S, s0, δ, F ), is such that:
• X controlled by environment; Y controlled by agent;
• 2X∪Y , alphabet of game;
• S, states of game;
• s0, initial state of game;
• δ : S × 2X∪Y → S, transition function of the game: given current state s and a choice of propositions X and Y the resulting state of

the game is δ(s, (X,Y )) = s′;
• F , final states of game, where game can be considered terminated.

Winning condition for dfa games
Let

PreAdv(E) = {s ∈ S | ∃Y ∈ 2Y .∀X ∈ 2X .δ(s, (X,Y )) ∈ E}

Compute the set Win(G) of winning states of a DFA game G, i.e., states from which the agent can win the DFA game G, by least-fixpoint:
• Win0(G) = F (the final states of G)
• Wini+1(G) = Wini(G) ∪ PreAdv(Wini(G))

• Win(G) =
⋃
i

Wini(G)

Computing Win(G) is linear in the number of states in G.
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Compute the set Win(G) of winning states of a DFA game G, i.e., states from which the agent can win the DFA game G, by least-fixpoint:
• Win0(G) = F (the final states of G)
• Wini+1(G) = Wini(G) ∪ PreAdv(Wini(G))

• Win(G) =
⋃
i

Wini(G)

Computing Win(G) is linear in the number of states in G.
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Computing Strategies
To actually compute a strategy, we need to
• Apply any choice function to get only one value choice(ω(s)) (any choice would be good) among those in ω(s), where

ω(s) = {Y | if s ∈Wini+1(G)−Wini(G) then ∀X.δ(s, (X,Y )) ∈Wini(G)}

• Compute the corresponding strategy σa : (2X )∗ → 2Y via a transducer TG obtained form the game G and the function choice(ω(s)).
The obtained σa is memory-full, but has only finite number of states.

Strategy as a transducer
The strategy returned is a transducer TG = (2X , S, s0, %, ωchoice) where:
• 2X is the alphabet of the trasducer;
• S are the states of the trasducer;
• s0 is the initial state;
• % : S × 2X → S is the transition function (partial) such that

%(s,X) = δ(s, (X, choice(ω(s))))

• ωchoice : S → 2Y is the output function such that

ωchoice = choice(ω(s))
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Synthesis in ltl

Synthesis for general ltl specifications does not scale (yet).

Solving reactive synthesis

Algorithm for ltl synthesis
Given ltl formula ϕ
1: Compute corresponding Buchi Nondeterministic Aut. (NBW) (exponential)
2: Determinize NBW into Deterministic parity Aut. (DPW) (exp in states, poly in priorities)
3: Synthesize winning strategy for parity game (poly in states, exp in priorities)
Return strategy

Reactive synthesis is 2EXPTIME-complete, but more importantly the problems are:
• The determinization in Step 2: no scalable algorithm exists for it yet.

I From 9-state NBW to 1,059,057-state DRW [AlthoffThomasWallmeier2005]
I No symbolic algorithms

• Solving parity games requires computing nested fixpoints (possibly exp many)
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Planning and Synthesis

Planning in Nondeterministic Domain
• Fluents F (propositions) – controlled by the environment
• Actions A (actions) – controlled by the agent
• Domain D – specification of the dynamics
• Goal G – propositional formula on fluents describing

desired state of affairs to be reached

Planning as game between two players
• Arena: the domain
• Players: agent and environment
• Game: agent tries to force eventually reaching G no

matter how other environment reacts
• Problem: find agent-strategy σa : (2F )∗ → A to win the

game

Complexity
EXPTIME-complete in size of domain specified in PDDL.

Synthesis
• Inputs X (propositions) – controlled by the environment
• Outputs Y (propositions) – controlled by the agent
• Domain – not considered
• Goal ϕ – arbitrary ltlf (or other temporal logic

specification) on both X and Y

Synthesis as game between two players
• Arena: unconstraint! clique among all possible

assignments for X and Y
• Players: agent and environment
• Game: agent tries to force a play that satisfies ϕ no

matter how other environment reacts.
• Problem: find agent-strategy σa(2X )∗ → 2Y to win the

game.

Complexity
2EXPTIME-complete in size of ϕ.

See Sheila McIlraith’s and Alberto Camacho’s talks!
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Planning and Synthesis

Planning in Nondeterministic Domain
• Fluents F (propositions) – controlled by the environment
• Actions A (actions) – controlled by the agent
• Domain D – specification of the dynamics
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desired state of affairs to be reached
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• Game: agent tries to force eventually reaching G no matter

how other environment reacts
• Problem: find agent-strategy σa : (2F )∗ → A to win the

game

Complexity
EXPTIME-complete in size of domain specified in PDDL.

Synthesis
• Inputs X (propositions) – controlled by the environment
• Outputs Y (propositions) – controlled by the agent
• Domain – not considered
• Goal ϕ – arbitrary ltlf (or other temporal logic

specification) on both X and Y

Synthesis as game between two players
Arena: unconstraint! clique among all possible assignments for
X and Y

• Players: agent and environment
• Game: agent tries to force a play that satisfies ϕ no matter

how other environment reacts.
• Problem: find agent-strategy σa(2X )∗ → 2Y to win the

game.

Complexity
2EXPTIME-complete in size of ϕ.

We want to revisit the assumption that the environment is unconstrained!

Giuseppe De Giacomo (University of Oxford & Sapienza) Linear Temporal Logics on Finite Traces AAAI 2023 Spring Symposium 58 / 83



Planning and Synthesis

Planning in Nondeterministic Domain
• Fluents F (propositions) – controlled by the environment
• Actions A (actions) – controlled by the agent
• Domain D – specification of the dynamics
• Goal G – propositional formula on fluents describing

desired state of affairs to be reached

Planning as game between two players
Arena: the domain

• Players: agent and environment
• Game: agent tries to force eventually reaching G no matter

how other environment reacts
• Problem: find agent-strategy σa : (2F )∗ → A to win the

game

Complexity
EXPTIME-complete in size of domain specified in PDDL.

Synthesis
• Inputs X (propositions) – controlled by the environment
• Outputs Y (propositions) – controlled by the agent
• Domain – not considered
• Goal ϕ – arbitrary ltlf (or other temporal logic

specification) on both X and Y

Synthesis as game between two players
Arena: unconstraint! clique among all possible assignments for
X and Y

• Players: agent and environment
• Game: agent tries to force a play that satisfies ϕ no matter

how other environment reacts.
• Problem: find agent-strategy σa(2X )∗ → 2Y to win the

game.

Complexity
2EXPTIME-complete in size of ϕ.

We want to revisit the assumption that the environment is unconstrained!

Giuseppe De Giacomo (University of Oxford & Sapienza) Linear Temporal Logics on Finite Traces AAAI 2023 Spring Symposium 58 / 83



Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 Blurring of ltlf and ltl is Dangerous!

4 ltlf and Automata

5 ltlf Reasoning

6 ltlf Synthesis Under Full Controllability (BPM)

7 ltlf Synthesis

8 Planning and Synthesis

9 Planning for ltlf goals

10 Planning revisited: Synthesis with a model of the environment

11 Conclusion

Giuseppe De Giacomo (University of Oxford & Sapienza) Linear Temporal Logics on Finite Traces AAAI 2023 Spring Symposium 59 / 83



Planning in Nondeterministic Domains (fondsp)

Planning in nondeterministic domains
• Environment Model (DOM)

I Environment model is called “domain”
I Specs of environment’s behaviors of the world in response

to agent’s action
I Domain expressed as with specific formalisms

F PDDL
I DOM is, or better generates, a non-deterministic transition

system, i.e., a game arena for two players Agent and Env!
• Agent Task (GOAL)

I Agent task is called “goal”
I Specs of task to achieve
I GOAL expressed as reaching a state of the domain with

desired properties
• Find agent plan/program/strategy/policy that fulfills
GOAL in DOM

Task 3

Task 1

Task 2

Task n

Model of the Environment 

Find plan that fulfills the desired task
in spite of how the environment responds,
i.e., wins the GOAL in nondeterministic DOM
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Planning in Nondeterministic Domains

Who controls what?
Fluents controlled by environment
Actions controlled by agent Observe: δ(s, a, s′)

Game arena induced by a nondeterministic domain
If we consider this information on the control, then TD is in fact a game arena: TD = (2F ,A, s0, α, δ) where:
• F is the set of fluents (atomic propositions) - controlled by the environment
• A is the set of actions (atomic symbols) - controlled by agent
• 2F is the set of states
• s0 is the initial state (initial assignment to fluents)
• α(s) ⊆ A represents action preconditions
• δ(s, a, s′) with a ∈ α(s) represents nondeterministic actions effects (including frame).

Hence to execute a transition in state s
I The agent needs to choose the action a
I The environment need to choose the resulting state s′.
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Planning in Nondeterministic Domain

Planning
Given a nondeterministic domain D and a goal G in propositional logic:

• Find agent executable strategy (or plan) σa such that for every environment strategies σe that are compliant with D,
we have that the play(σa, σe) = s0, a1, s1, . . . , sn−1, an, sn is such that sn |= G.

In other words find a strategy (or plan) σa that reaches a state where G holds no matter what the environment does.

The strategy σa, if it exists is called winning strategy
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ltlf Goals

(1) In order express arbitrary goals in ltlf –or ltl–, we need to:

Represent actions as propositions
Decide how we represent actions as propositions of ltlf formulas.
• Use one proposition a for each action a. Then:

I We need to add the requirement that at most one action proposition is true in each instant 2(a ⊃
∧
b∈A∧b 6=a

¬b).

• Use a binary (logarithmic) encoding of action each a. Then:
I Each action a is represented as a boolean formula a over the propositions for the binary encoding;
I Some binary encoding will correspond to non-existing actions, if the number of actions is not a power of 2. In this case we need

to specify what these spurious action do in the transition system, e.g., nope, or we need to forbid them.

For now, we will adopt the first way of representing actions, but later when we study symbolic technique we will also use
the latter.

(cf. ltlf Model Checking)
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ltlf Goals

(2) In order express arbitrary goals in ltlf –or ltl–, we also need to:

Pair actions and states in a time instant
Decide how we need to pair actions and states in a time instant
• Pair the agent action and the resulting state, (in fact labeling of the state) of the environment

The propositional representation a for an action a will stand for “action a just executed”.

• Pair current environment (labeling of the) state and the next action instructed by the agent

The propositional representation a for an action a will stand for “action a just instructed to be executed next”.

Both ways of pairing actions and states are fine. But choosing one or the other is essential, because it changes how we
specify properties in ltlf .

(cf. ltlf Model Checking)
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ltlf Goals
ltlf -traces
A TD trace e0, a1, e1, · · · , an, en induces a corresponding ltlf -trace:

• If we pair action and the resulting state: (dummy, e0), (a1, e1), · · · , (an, en), where dummy is a dummy starting
action.

• If we pair state and the next action: (e0, a1), (e1, a2) · · · , (en−1an), (en, dummy), where dummy is a dummy ending
action.

Example
The way we pair actions and states changes how we specify properties in ltlf :
Suppose we want to say:

every time that φ1 is true in the current state if we do action a we get φ2 in the next state”.

• If we pair action and the resulting state, we write: 2(φ1 ⊃  (a ⊃ φ2))

• If we pair state and the next action, we write: 2((φ1 ∧ a) ⊃  φ2)

In this course we pair action and the resulting state to have traces that represents cleanly histories (things already
happened).

(cf. ltlf Model Checking)
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Nondeterministic Domains as Automata

With these decisions taken we can transform the nondeterministic domain TD = (2F ,A, s0, α, δ) into an automaton
recognizing all its traces.

Automaton AD for D is a dfa!!!
AD = (2F∪A, Q, qinit, ρ, F ) where:
• 2F∪A alphabet (actions A include dummy start action)
• Q = 2F ∪ {qinit} set of states
• qinit dummy initial state
• F = 2F (all states of the domain are final)
• ρ(s, [a, s′]) = s′ with a ∈ α(s), and δ(s, a, s′) ρ(qinit, [start, s0]) = s0

(notation: [a, s′] stands for {a} ∪ s′)
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Nondeterministic Domains as Automata

Example (Simplified Yale shooting domain variant)
• Domain TD :

not a 
wa,w

shoot

wait wait/shoot

a,
not w

shoot
shoot

• DFA AD :

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
start, a, w

a 
not w

shoot, a, not w shoot, not a, w
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Nondeterministic Domains as Automata
Planning in nondeterministic domains
• Set the arena formed by all traces that satisfy both the dfa AD for D and the dfa for 3G where G is the goal.
• Compute a winning strategy. (EXPTIME-complete in D, constant in G)

Example (Simplified Yale shooting domain)
AD A3¬a

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
start, a, w

a 
not w

shoot, a, not w shoot, not a, w

10

true

not alive

alive

AD ∩ A3¬a:

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
0 start, a, w

a 
not w

0

shoot, a, not w shoot, not a, w

strategy

init, 0 → start
a, w, 0 → shoot
a,¬w, 0 → shoot
¬a, w, 1 → win!
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fondsp for ltlf Goals
Example (Simplified Yale shooting domain)
Consider the goal 32¬a.

AD A32¬a

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
start, a, w

a 
not w

shoot, a, not w shoot, not a, w

10

not a

not a

true

AD ∩ A32¬a:

not a 
w
0

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
0 start, a, w

a 
not w

0

shoot, a, not w shoot, not a, w

wait/shoot, 
not a, w

shoot, not a, w

shoot, not a, w

Can we use directly nfa’s?
No, because of a basic mismatch
• nfa have perfect foresight, or clairvoyance (angelic nondeterminism)
• Strategies must be runnable: depend only on past, not future (devilish nondeterminism)
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shoot, not a, w
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init
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a 
not w

shoot, a, not w shoot, not a, w

10

not a

not a

true

AD ∩ A32¬a:

not a 
w
0

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
0 start, a, w

a 
not w

0

shoot, a, not w shoot, not a, w

wait/shoot, 
not a, w

shoot, not a, w

shoot, not a, w

Can we use directly nfa’s?
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fondsp for ltlf Goals
We need first to determinize the nfa for ltlf formula
nfa for 32¬a corresponding dfa

10

not a

not a

true

10

not a

not a

a

a

(dfa can be exponential in nfa in general)

Example (Simplified Yale shooting domain)
AD A32¬a

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
start, a, w

a 
not w

shoot, a, not w shoot, not a, w

10

not a

not a

a

a

AD ∩A32¬a:
not a

w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot, 
not a, w

init
0 start, a, w

a 
not w

0

shoot, a, not w shoot, not a, w

strategy

init, 0 → start
a, w, 0 → shoot
a,¬w, 0 → shoot
¬a, w, 1 → win!
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fondsp for ltlf Goals

fondsp for ltlf goals

Algorithm: fondsp for ldlf/ltlf goals
1: Given ltlf domain D and goal ϕ
2: Compute nfa for ϕ (exponential)
3: Determinize nfa to dfa (exponential)
4: Compute intersection with dfa of D (polynomial)
5: Synthesize winning strategy for dfa game (linear)
6: Return strategy

Theorem
Planning in nondetermnistic domains for ltlf goals is:
• EXPTIME-complete in the domain (compactly represented using of fluents – polynomial in number of states);
• 2-EXPTIME-complete in the goal.
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Planning revisited: Synthesis with a model of the environment

Agent

Environment

fluents actions

Task
Task for the agent, also called goal
• It is a specification of the good traces (i.e., plays generated by agent and env that are considered good.)
• Typically of a simpler form wrt synthesis, i.e.,:

eventuallyGoodStateOfAffairs ∧ always¬PreViolated

• But goal can also be temporally extended, i.e., arbitrary formulas expressed in ltlf
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Planning revisited: Synthesis with a model of the environment

Agent

Environment
fluentsactions

Domain
• Planning consider the agent acting in a (nondeterministic) domain
• The domain is a model of how the environment works
• That is, it is a specification of the possible environment behaviors, that is:

A specification of how the environment responds to agent actions.

The presence of domain is a crucial point of planning since the beginning!
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Planning in nondeterministic domains

Transition system induced by a nondeterministic domain
A nondeterministic domain D = (F ,A, I) induces a transition system TD = (2F ,A, s0, α, δ) where:
• F is the set of fluents (atomic propositions)
• A is the set of actions (atomic symbols)
• 2F is the set of states
• s0 is the initial state (initial assignment to fluents)
• α(s) ⊆ A represents action preconditions

Note: fulfilling action precondition is a responsibility of the agent!
• δ(s, a, s′) with a ∈ α(s) represents nondeterministic action effects (including frame).

Note: fulfilling action effects + frame is a responsibility of the environment!

Remove action preconditions form the domain
In the following we assume action have no preconditions in the domains.
• When preconditions are not satisfied the environment remains in the same state. –requires conditional effects
• In traces/plays, “agent can select an action only if its satisfies its precondition” can be expressed in the (ltlf ) goal.
• Indeed: if Pre(a) = ϕa then it suffices to require in the goal 2((#a) ⊃ ϕa, i.e.:

“Always, if the action a has been just executed next, then its precondition ϕa is now satisfied.”

In this way, the domain becomes a specification of the environment.
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Planning revisited: Synthesis with a model of the environment

Domain as a specification of the environment

JDK = {σe | σe complies with domain D}

where, an environment strategy σe complies with domain D, if for every trace a0, s0, a1, s1, · · · , an, sn of TD (a0 is the
dummy start action) we have that σe(a0, , . . . , an+1) = s′n+1 is such that δ(sn, an+1, sn+1).

Planning in nondeterministic domains
Given an ltlf task Goal for the agent, and a domain D modeling the environment
• Realizability:

check if ∃σa.∀σe ∈ JDK.trace(σa, σe) |= Goal

• Synthesis:
find σa such that ∀σe ∈ JDK.trace(σa, σe) |= Goal
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Synthesis + environment model = planning

We can transfer the idea of working with a model of the world to synthesis

Synthesis for a task in an environment
Given a task Task for the agent, and a specification Env of the possible environment strategies:
• Realizability:

check if ∃σa.∀σe ∈ JEnvK.trace(σa, σe) |= Task

• Synthesis:
find σa such that ∀σe ∈ JEnvK.trace(σa, σe) |= Task
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Specifying possible environment behaviors in ltl
• Can we use ltl/ltlf to specify an environment, i.e., the possible environment strategies?
• Yes, through the notion of realizability!

Environment specifications in ltl
Let Env be an ltl/ltlf formula over action and fluents.

JEnvK = {σe|∀σa.trace(σa, σe) |= Env}

i.e Env denotes all environment behaviors that play according to the specification whatever is the agent behavior.

Consistent environment specifications
Is any ltl/LTLf formula a valid environment specification? No, Env needs to be “consistent”!:

JEnvK 6= ∅ i.e. ∃σe.∀σa.trace(σa, σe) |= Env

For example “eventually agent does action dec”
eventually dec

is not a valid specification of the environment, since the agent might decide not to do dec.
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Check consistency of environment specifications

Check consistency of environment specifications
First we need to check consistency of the environment specification Env, i.e., our model of the world (JEnvK 6= ∅). We can
do so my checking unrealizability of agent task Env (we exploit determinacy of resulting games):

∃σa.∀σe.trace(σa, σe) |= ¬Env

Theorem
Checking consistency of ltl/ltlf environment specification is 2EXPTIME-complete.

Note: for ltl we could solve realizability for the environment directly.
Instead for ltlf no, because the agent, and not the environment, has the choice of stopping the trace

– though we could solve a safety game instead of a reachability one (see later).
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How to solve synthesis with world models
Solve synthesis

Theorem ([AminofDeGiacomoMuranoRubinICAPS2019])
Let Task be a agent task and Env be a consistent ltlf/ltl environment specification. Then
• There is agent strategy realizing Task in Env iff there is an agent strategy realizing Env ⊃ Task

∃σa.∀σe ∈ JEnvK.trace(σa, σe) |= Task iff ∃σa.∀σe.trace(σa, σe) |= Env ⊃ Task

• Moreover, every agent strategy realizing Env ⊃ Task is a agent strategy realizing Task in Env

for all σa we have: ∀σe.trace(σa, σe) |= Env ⊃ Task implies ∀σe ∈ JEnvK.trace(σa, σe) |= Task

but not viceversa!

Hence, to find agent strategy realizing Task under the environment specification Env, we can use standard ltl/ltlf
synthesis for

Env ⊃ Task

Theorem
Solving ltl/ltlf synthesis under environment specification is 2EXPTIME-complete.
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Environment specification in ltl/ltlf
• FOND planning for LTLf tasks

• Strong: these are simple Markovian Safety properties [DeGiacomoRubinIJCAI2018]

• Stochastic fairness: as FOND strong cyclic planning, but on an arena that is obtained from domain D and Task [DeGiacomoRubinIJCAI2018], 
[Aminof et al. ICAPS 2020]

• Env: Safe, coSafe, GR(1), Live
• Env = Safe: Safe implies Task  iff  not Safe or Task. But not Safe is LTLf  so this is LTLf synthesis 

• Env = Simple Fairness and Stability: Use task to generate arena, then play for single nested fixpoint [Zhu et al. AAAI2020]

• Env = Safe & coSafe: reduction to deterministic Buchi automata [Camachio et al 2018], use Safe, coSafe and Task to generate arena, then 
play for single nested fixpoint [De Giacomo et al. KR2020]

• Env = Safe & GR(1): reduction to GR(1), use Task and Safe to generate arena, then play GR(1) game (double nested fixpoint) [De Giacomo 
et al. IJCAI2021]

• Env = Live & Safe: reduction to Live implies LTLf, solvable by LTL synthesis, needed for (hopefully small) Live [De Giacomo et al. KR 2020]

• Env = Live & Safe + agent MUST stop!
• Agent stops env irrelevant: drop Live, and solve Safe implies Task (LTLf synthesis) [De Giacomo et al KR2021]
• When agent stops env can continue to evolve: the agent cannot act anymore, though some AgtSafe must be maintained! 

Find by model checking “agent safe states” where AgtStafe can be maintained without doing anything, 
then solve Safe implies Task& “at agent safe states” (LTLf synthesis) [De Giacomo et al KR2021]
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Conclusion

• We have looked at impact of expressing temporal properties/constraints/goals on
traces that are finite as typical in AI Planning and BPM modeling.

• By the way, this assumption has been considered a sort of accident in much of the AI
and BPM literatures, and standard temporal logics (on infinite traces) have been
hacked to fit this assumption, with some success, but later clean solutions have been
devised.

• We have focussed on ltlf on finite traces, which has the expressive power of fol,
but we can go to full mso (monadic second-order logic over finite traces) at no cost,
e.g., by ldlf which is a nice combination of ltlf and re, and behaves
computational as ltlf .

• We can also look at Pure Past LTL, which has exactly the same expressive power of
ltlf , but whose dfa’s are only 1EXPTIME (due to a property of reverse languages).

• There are elegant and effective techniques for reasoning, verification and execially
synthesis in this setting – Logics-Automata-Games in this case it’s not “just theory”.
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