
Rance Cleaveland
Department of Computer Science

University of Maryland
USA

Query Checking for Finite Linear-Time Temporal
Logic

28 March 2023 AAAI Spring Symposium Series 2023

Research supported by NSF, Office of Naval Research
Joint work with Samuel Huang

This Talk

• How to solve queries in Finite Linear Temporal Logic (LTL)!
– What is a query?
– Why do you want to solve them?
– What’s (Finite) LTL?

• Agenda
– A bit about query checking
– A bit about Finite LTL and Finite LTL queries
– A bit about automata and Finite LTL
– A bit about using automata to solve Finite LTL queries
– A bit about a pilot study
– Conclusion!

1

Query Checking (1/2)

• Traditional system specification via temporal logic
– Write some formulas 𝜑𝜑
– Develop a system 𝑀𝑀
– Check if 𝑀𝑀 satisfies each 𝜑𝜑 (𝑀𝑀 ⊨ 𝜑𝜑)

• In practice: You often have 𝑀𝑀, but not 𝜑𝜑
• Query checking: a way to extract 𝜑𝜑 from 𝑀𝑀

2

Query Checking (2/2)

• Queries = formulas with “holes” (missing subformulas)
• The query checking problem, classically

– Given 𝑀𝑀
– Given query 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] (𝑣𝑣𝑣𝑣𝑣𝑣 is the hole)
– Compute all (propositional) formulas γ such that 𝑀𝑀 satisfies 𝜑𝜑[𝛾𝛾]

(𝜑𝜑[𝛾𝛾] is 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] with all occurrences of 𝑣𝑣𝑣𝑣𝑣𝑣 replaced by 𝛾𝛾)

• Uses
– Specification mining
– System comprehension / understanding

3

Examples (LTL)

• G 𝑣𝑣𝑣𝑣𝑣𝑣
– G: “always”
– Solutions to query: system invariants!

• G (𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑒𝑒𝑣𝑣𝑣𝑣)
– F: “eventually”
– 𝑒𝑒𝑣𝑣𝑣𝑣: true in error states
– Solutions to query: states that invariably lead to a future error!

• Note: multiple solutions usually! Are generally interested in
extremal ones (maximal, minimal)

4

More Examples

• G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)
– 𝑚𝑚: “Microsoft share price closes higher”
– Solutions to query: states from which Microsoft share price is

guaranteed to increase (eventually)!

• (𝑣𝑣𝑣𝑣𝑣𝑣 ∧ ¬𝑔𝑔𝑣𝑣) → (F 𝑔𝑔𝑣𝑣)
– 𝑔𝑔𝑣𝑣: “Goal reached”
– Solutions to query: states from which the goal configuration can be

reached

5

History of Query Checking

• Chan introduced notion in 2000 CAV paper for CTL
– Showed that some queries have unique strongest solutions
– Gave algorithm for computing strongest solutions in this case

• Subsequent developments for larger classes of CTL queries, some
infinite-state systems by Bruns, Chechik, Godefroid, Gurfinkel,
me(!) through early, mid 2000s

• Applications (e.g. “latent behavior detection” in UML, temporal-
logic planner explanations)

• Extensions to LTL by Chokler, Gurfinkel, Strichman (2011), Huang
and me(!) 2017

6

This Work

• For classical query checkers to work, you need model 𝑀𝑀
• What if you don’t have 𝑀𝑀?

– Could be proprietary
– Could also not exist (e.g. stock market)

• This work: query checking (aka “query solving”) from observed
system executions
– Given: finite set of finite state sequences (“executions”), query
– Compute: solutions to query that make it true for each execution

7

Remainder of Talk

• Finite LTL (slightly different from LTL𝑓𝑓)
• Automata for Finite LTL formulas via tableaux
• Query checking using automata
• Proof of concept study
• Conclusion

8

Query Checking Generalizes Invariant Mining

• Given: collection of system executions
• Compute: invariants as association rules = propositional implications

– Mining association rules = given states, look for associations rules that are
(always / usually) true

– Algorithm: Apriori (cf. Agrawal and Srikant 1994)
• Our earlier work: using Apriori to mine invariants from MATLAB / Simulink,

e.g. G (𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏𝑒𝑒 → 𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑣𝑣𝑐𝑐𝑖𝑖𝑖𝑖𝑣𝑣𝑒𝑒) (automotive cruise control)
– RV 2010
– ACM TECS 2017
– SEFM 2018

• Query solving: generalizes invariant mining in that user specifies temporal
form of queries to be solved

9

Finite LTL

• To have queries for finite sequences, need a logic for finite
sequences

• LTL: infinite sequences!
• Finite LTL: LTL interpreted with respect to finite sequences
• Syntax

𝜑𝜑 ∷= 𝑣𝑣 ¬ 𝜑𝜑 𝜑𝜑 ∨ 𝜑𝜑 X 𝜑𝜑 𝜑𝜑 U 𝜑𝜑
𝑣𝑣 atomic proposition
¬ negation
∨ disjunction
X next-state
U until

10

Finite LTL Semantics (1/2)

• States: convey truth / falsity of atomic propositions
– If 𝐴𝐴 is (finite) set of all atomic propositions
– State 𝜎𝜎 ⊆ 𝐴𝐴 assigns true to all 𝑣𝑣 ∈ 𝜎𝜎, false to all 𝑣𝑣 ∉ 𝜎𝜎

• Regular LTL
– Formulas interpreted with respect to infinite sequences of states
– Infinite sequences always have

• At least one state
• A successor to every state in the sequence

• Finite sequences
– May be empty (𝜀𝜀)
– States do not always have successors in a sequence!

11

Finite LTL Semantics

• Let 𝜋𝜋 ∈ 2𝐴𝐴 ∗ = 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 be a finite sequence of states
• We define 𝜋𝜋 ⊨ 𝜑𝜑 “𝜋𝜋 satisfies 𝜑𝜑”

– 𝜋𝜋 ⊨ 𝑣𝑣 iff 𝑣𝑣 ∈ 𝜎𝜎1
• So 𝜎𝜎1 must exist!
• Implication: 𝜀𝜀 ⊭ 𝑣𝑣
• Another implication: 𝜀𝜀 ⊨ ¬𝑣𝑣

– 𝜋𝜋 ⊨ X 𝜑𝜑 iff 𝜎𝜎2 ⋯𝜎𝜎𝑛𝑛 ⊨ 𝜑𝜑
• Again, 𝜎𝜎1 must exist!
• Implication: 𝜀𝜀 ⊭ X 𝜑𝜑 for any 𝜑𝜑
• Another implication: 𝜀𝜀 ⊨ ¬X¬𝜑𝜑 for any 𝜑𝜑

– 𝜋𝜋 ⊨ 𝜑𝜑1 U 𝜑𝜑2 iff 𝜎𝜎1 𝜎𝜎2 ⋯ 𝜎𝜎𝑖𝑖+1 𝜎𝜎𝑖𝑖 ⋯ 𝜎𝜎𝑛𝑛
• Suppose 𝜀𝜀 ⊨ 𝜑𝜑
• What satisfies true U 𝜑𝜑?

12

[
𝜑𝜑1

[
𝜑𝜑1

[
𝜑𝜑1

[
𝜑𝜑2

…

Derived Operators in Finite LTL

• true ≝ 𝑣𝑣 ∨ ¬𝑣𝑣
• false ≝ ¬true
• 𝜑𝜑1 ∧ 𝜑𝜑2≝ ¬(¬𝜑𝜑1 ∨ ¬𝜑𝜑2)
• X 𝜑𝜑 ≝ ¬X¬𝜑𝜑 “weak next”
• 𝜑𝜑1 R 𝜑𝜑2 ≝ ¬(¬𝜑𝜑1 𝑈𝑈 ¬𝜑𝜑2) “release”
• F 𝜑𝜑 ≝ true U 𝜑𝜑 “eventually”
• G 𝜑𝜑 ≝ ¬F¬𝜑𝜑 “always”

13

Workarounds!

• ¬𝑣𝑣
– 𝜀𝜀 ⊨ ¬ 𝑣𝑣
– 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 ⊨ ¬𝑣𝑣 ∧ X true iff 𝑖𝑖 ≥ 1 and 𝑣𝑣 ∉ 𝜎𝜎1

• F ¬𝑣𝑣
– 𝜋𝜋 ⊨ F¬𝑣𝑣 all 𝜋𝜋
– 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 ⊨ F (¬𝑣𝑣 ∧ X true) iff 𝑣𝑣 ∉ 𝜎𝜎𝑖𝑖 some 𝑖𝑖

• G 𝑣𝑣
– 𝜋𝜋 ⊭ G 𝑣𝑣 all 𝜋𝜋
– 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 ⊨ G (𝑣𝑣 ∨ X false) iff 𝑣𝑣 ∈ 𝜎𝜎𝑖𝑖 all 𝑖𝑖

14

Facts about Finite LTL

• ∅ ⊆ 𝐴𝐴 is state making all atomic propositions false
– Let 𝜙𝜙 be a propositional formula (no X, U, etc.)
– Then 𝜀𝜀 ⊨ 𝜙𝜙 iff ∅ ⊨ 𝜙𝜙

• This fact implies:
– Usual propositional identities hold (deMorgan, distributivity, etc.).
– A principled 𝑂𝑂(𝑖𝑖) strategy for encoding LTL𝑓𝑓 exists!

S. Huang and R. Cleaveland, “A tableau construction for Finite Linear-Time Temporal Logic”, Journal of
Logic and Algebraic Methods in Programming (2022).

15

From (Finite) LTL to Automata

• Motivation for Finite LTL: query checking over finite sets of system
behaviors!

• Important mathematical questions
– Satisfiability: is a (Finite) LTL formula satisfiable?
– Model checking: do a system’s finite behaviors satisfy a given formula?
– Synthesis: generate a sequence / system satisfying a given formula

• How to address these questions? Automata
– Generate finite-state machines from formulas
– Use resulting machines as basis for analysis procedures

• Notation: 𝐿𝐿 𝜑𝜑 = 𝜋𝜋 ∈ 2𝐴𝐴 ∗ 𝜋𝜋 ⊨ 𝜑𝜑}

16

Tableau Constructions

• Basis for generating automata from LTL: tableaux
– Generate automata whose vertices are labeled by sets of formulas,

transitions labeled by propositional states (= assignments of truth values
to atomic propositions, recall)

– Key property: sequences accepted by a given vertex are the sequences
making the associated formula true

• For LTL, sequences are infinite, so automata are 𝜔𝜔-automata (e.g.
Büchi) accepting infinite sequences

• For Finite LTL, regular finite automata suffice
– Automata accept / reject finite sequences
– Construction still associates formula with each vertex

17

Example

• G(𝑣𝑣 → F 𝑔𝑔)
– 𝑣𝑣,𝑔𝑔 are atomic propositions standing for “request” and “grant”
– Property asserts that every request is eventually granted
– What is automaton for this Finite LTL formula?

18

F 𝑔𝑔 ∧ G(𝑣𝑣 → F 𝑔𝑔)G(𝑣𝑣 → F 𝑔𝑔)
𝜎𝜎2

State 2𝐴𝐴

𝜎𝜎0 { }
𝜎𝜎1 {𝑔𝑔}
𝜎𝜎2 {𝑣𝑣}
𝜎𝜎3 {𝑔𝑔, 𝑣𝑣}

𝜎𝜎0,𝜎𝜎1,𝜎𝜎3

𝜎𝜎1,𝜎𝜎3

𝜎𝜎0,𝜎𝜎2

The Tableau Construction for Finite LTL
• Basic step

– Convert Finite LTL formula 𝜑𝜑 into automaton normal form (ANF)
• Literal ℓ: 𝑣𝑣 or ¬𝑣𝑣 for some 𝑣𝑣 ∈ 𝐴𝐴
• ANF clause: ⋀ℓ ∧ N𝜑𝜑𝜑 where N is either X or X
• ANF: ⋁𝐶𝐶 where each C is an ANF clause
• Example: F 𝑣𝑣 (𝑣𝑣 atomic) can be converted into ANF formula 𝑣𝑣 ∨ X (F 𝑣𝑣)

– Turn each ANF clause 𝐶𝐶 = ⋀ℓ ∧ N𝜑𝜑𝜑 into transitions
– Accepting states: those whose formulas are satisfied by ε (syntactically checkable)
– Result: NFA 𝑀𝑀𝜑𝜑 with 𝐿𝐿 𝑀𝑀𝜑𝜑 = 𝐿𝐿(𝜑𝜑)

19

𝜑𝜑 𝜑𝜑𝜑
⋀ℓ

Discussion

• #states ≤ 2 𝜑𝜑

• Experimental evaluation (184 LTL formulas from Spot benchmark):
on average, #states = 0.69 ⋅ |𝜑𝜑|

• Other methods for generating NFAs from Finite LTL go “through”
e.g. Büchi automata (or alternating automata, …)
– Finite LTL 𝜑𝜑 translated into LTL 𝜑𝜑𝜑 over “infinite-ized” sequences
– Procedure used to convert 𝜑𝜑𝜑 to Büchi automaton
– Büchi automaton then converted to NFA for 𝜑𝜑𝜑

• Pros / cons
– Pro: Highly optimized procedures for LTL-to-Büchi!
– Con: Loss of connection between automaton states and formulas

20

Finite LTL Queries

• … Finite LTL formulas with “holes” (denoted 𝑣𝑣𝑣𝑣𝑣𝑣)
– We write 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] to emphasize presence of 𝑣𝑣𝑣𝑣𝑣𝑣
– If 𝛾𝛾 is a formula then formula 𝜑𝜑[𝛾𝛾] is the instantiation of 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] by 𝛾𝛾

• Example
– Let 𝑚𝑚, 𝑣𝑣,𝑔𝑔 be atomic propositions reflecting “Microsoft / Amazon / Google

share price rises” on a given day.
– State sequences: daily stock information over period of days/weeks/etc.
– Query: 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 = G (𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)

• 𝑣𝑣𝑣𝑣𝑣𝑣 is hole
• 𝜑𝜑 𝑣𝑣 ∧ ¬𝑔𝑔 = G (𝑣𝑣 ∧ ¬𝑔𝑔 → F 𝑚𝑚) is instantiation of 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] by 𝛾𝛾 = 𝑣𝑣 ∧ ¬𝑔𝑔
• Instantiation says: “it is always the case that if Amazon goes up and Google does not

on a given day, then Microsoft goes up eventually”

21

The Finite LTL Query-Checking Problem

• Given:
– Π = 𝜋𝜋1, … ,𝜋𝜋𝑛𝑛 ⊆ 2𝐴𝐴 ∗

– Finite LTL query 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣]
• Compute:

𝑄𝑄𝐶𝐶 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 ,Π = all propositional 𝛾𝛾 such that 𝜋𝜋𝑖𝑖 ⊨ 𝜑𝜑[𝛾𝛾] all 𝑖𝑖
• E.g.

If 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 = G (𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚) then 𝑄𝑄𝐶𝐶(𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 ,Π) returns
characterization of all states guaranteeing that Microsoft stock goes up
eventually!

22

Solving the Query-Checking Problem

• Brute force: enumerate all (semantically distinct) possible solutions
– If 𝐴𝐴 = 𝑖𝑖 then there are 2𝐴𝐴 possible states
– If there are 𝑚𝑚 states then there are 2𝑚𝑚 semantically distinct propositions

• Proposition = set of states (those making proposition true)
• For each subset of states there is a distinct proposition!

– So if 𝐴𝐴 = 𝑖𝑖 then there are 22𝑛𝑛 possible distinct propositions
• If 𝐴𝐴 = 2 then there are 222 = 24 = 16 distinct propositions

• If 𝐴𝐴 = 8 then there are 228 = 2256 ≈ 1078 = # of atoms in the observable universe
possible propositions

• A better approach: use automata!

23

Automata and Query Checking

• Recall automaton-based approach to LTL model checking (= checking if
every (infinite) execution 𝜋𝜋 ∈ 𝐿𝐿 𝑀𝑀 satisfies LTL formula 𝜑𝜑)
– Build Büchi automaton 𝐵𝐵¬𝜑𝜑 for ¬𝜑𝜑
– Check if 𝐿𝐿 𝑀𝑀 ∩ 𝐿𝐿 𝐵𝐵¬𝜑𝜑 = ∅ by composing 𝑀𝑀,𝐵𝐵¬𝜑𝜑

• We do something similar to compute 𝑄𝑄𝐶𝐶(Π,𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣)
– Negate query 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣], obtaining ¬𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣]
– Make automaton 𝑀𝑀Π such that 𝐿𝐿 𝑀𝑀Π = Π
– Construct query automaton 𝑀𝑀¬𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 with property that for all propositional 𝛾𝛾,
𝐿𝐿 𝑀𝑀¬𝜑𝜑 𝛾𝛾 = 𝐿𝐿(¬𝜑𝜑[𝛾𝛾])

– Compose 𝑀𝑀Π,𝑀𝑀¬𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 to obtain query automaton 𝑀𝑀Π,¬𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣]

– Compute all propositional 𝛾𝛾 such that 𝐿𝐿 𝑀𝑀Π,¬𝜑𝜑 𝛾𝛾 = ∅

24

• Like (symbolic) NFAs constructed from Finite LTL except:
– States labeled by queries rather than formulas
– Transitions labeled by propositional queries rather than formulas
– Acceptance depends on 𝑣𝑣𝑣𝑣𝑣𝑣

• Example: 𝑀𝑀𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 where 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 = G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)

Query Automata

25

F 𝑚𝑚 ∧ G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)

𝑣𝑣𝑣𝑣𝑣𝑣

¬𝑣𝑣𝑣𝑣𝑣𝑣 ∨ 𝑚𝑚

𝑚𝑚

𝑣𝑣𝑣𝑣𝑣𝑣

Instantiating a Query Automaton

• If 𝑀𝑀[𝑣𝑣𝑣𝑣𝑣𝑣] is a query automaton and 𝛾𝛾 is a propositional
formula then 𝑀𝑀[𝛾𝛾] is the finite automaton obtained by
– Instantiating all the queries in 𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣 with 𝛾𝛾; and
– Labeling all states whose instantiated query accept 𝜀𝜀 as accepting

• E.g. 𝑀𝑀 𝑣𝑣 ∨ ¬𝑔𝑔 :

26

F 𝑚𝑚 ∧ G((𝑣𝑣 ∨ ¬𝑔𝑔) → F 𝑚𝑚)G((𝑣𝑣 ∨ ¬𝑔𝑔) → F 𝑚𝑚)

𝑣𝑣 ∨ ¬𝑔𝑔

¬(𝑣𝑣 ∨ ¬𝑔𝑔) ∨ 𝑚𝑚

𝑚𝑚

𝑣𝑣 ∨ ¬𝑔𝑔

Constructing Query Automata

• Tableau method for Finite LTL can be used to construct query
automata for Finite LTL queries!
– Treat 𝑣𝑣𝑣𝑣𝑣𝑣 as atomic proposition
– Apply Finite LTL tableau method
– Ignore accepting states in resulting automata

• Simplification: queries in states can be replaced by
propositional queries; see paper

S. Huang and R. Cleaveland. “Temporal-Logic query checking over finite data streams,” International
Journal on Software Tools for Technology Transfer (2022).

27

Shattering Query Automata

• Key operation for 𝑄𝑄𝐶𝐶(Π,𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣): find 𝛾𝛾 so that 𝐿𝐿 𝑀𝑀Π,¬𝜑𝜑 𝛾𝛾 = ∅
• The shattering problem for finite-query automata

– Given: 𝑀𝑀𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣

– Compute: all 𝛾𝛾 such that 𝐿𝐿(𝑀𝑀𝜑𝜑 𝛾𝛾) = ∅
• General approach: systematically search for 𝛾𝛾 that shatter edge

queries (i.e. make 𝜑𝜑 𝛾𝛾 ≡ false), make states non-accepting.
• E.g.

– Suppose transition label is 𝛾𝛾 𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣 ∧ (𝑣𝑣 ∨ 𝑏𝑏)
– 𝛾𝛾 ¬𝑣𝑣 ∧ ¬𝑏𝑏 = (¬𝑣𝑣 ∧ ¬𝑏𝑏) ∧ 𝑣𝑣 ∨ 𝑏𝑏 ≡ false
– Setting 𝑣𝑣𝑣𝑣𝑣𝑣 = ¬𝑣𝑣 ∧ ¬𝑏𝑏 shatters this edge!

28

𝛾𝛾[𝑣𝑣𝑣𝑣𝑣𝑣]

Complexity

• 𝑂𝑂(22 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣) in worst case
• In practice: 𝑂𝑂(2 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣)
• Optimizations in paper improve run-time

29

Pilot Study

Experimental evaluation on synthetic data from past data-mining
competitions involving product sales, promotions
• Can deal with up to six atomic propositions, depending on

sequence length
• Some correlations among promotions / products and other

products detected

30

Conclusions

• Finite LTL queries: “templates” for formal specifications
• Query checking: given observations of system behavior, figure out how to

instantiate templates so every sequence satisfies them
• Approach is based on connection between Finite LTL formulas, automata
• “Proof of concept” implementation and experimental study
• Future directions

– More thorough evaluation
– Applications!
– Other logics besides Finite LTL (mu-calculus, Allen intervals, time, …)
– Relaxed query checking (“near invariants”)
– Noisy LTL

31

THANKS!

Rance Cleaveland
rance@cs.umd.edu

32

mailto:rance@cs.umd.edu

	Query Checking for Finite Linear-Time Temporal Logic
	This Talk
	Query Checking (1/2)
	Query Checking (2/2)
	Examples (LTL)
	More Examples
	History of Query Checking
	This Work
	Remainder of Talk
	Query Checking Generalizes Invariant Mining
	Finite LTL
	Finite LTL Semantics (1/2)
	Finite LTL Semantics
	Derived Operators in Finite LTL
	Workarounds!
	Facts about Finite LTL
	From (Finite) LTL to Automata
	Tableau Constructions
	Example
	The Tableau Construction for Finite LTL
	Discussion
	Finite LTL Queries
	The Finite LTL Query-Checking Problem
	Solving the Query-Checking Problem
	Automata and Query Checking
	Query Automata
	Instantiating a Query Automaton
	Constructing Query Automata
	Shattering Query Automata
	Complexity
	Pilot Study
	Conclusions
	

