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This Talk

• How to solve queries in Finite Linear Temporal Logic (LTL)!
– What is a query? 
– Why do you want to solve them?
– What’s (Finite) LTL?

• Agenda
– A bit about query checking
– A bit about Finite LTL and Finite LTL queries
– A bit about automata and Finite LTL
– A bit about using automata to solve Finite LTL queries
– A bit about a pilot study
– Conclusion!
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Query Checking (1/2)

• Traditional system specification via temporal logic
– Write some formulas 𝜑𝜑
– Develop a system 𝑀𝑀
– Check if 𝑀𝑀 satisfies each 𝜑𝜑 (𝑀𝑀 ⊨ 𝜑𝜑)

• In practice:  You often have 𝑀𝑀, but not 𝜑𝜑
• Query checking:  a way to extract 𝜑𝜑 from 𝑀𝑀
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Query Checking (2/2)

• Queries = formulas with “holes” (missing subformulas)
• The query checking problem, classically

– Given 𝑀𝑀
– Given query 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] (𝑣𝑣𝑣𝑣𝑣𝑣 is the hole)
– Compute all (propositional) formulas γ such that 𝑀𝑀 satisfies 𝜑𝜑[𝛾𝛾]

(𝜑𝜑[𝛾𝛾] is 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] with all occurrences of 𝑣𝑣𝑣𝑣𝑣𝑣 replaced by 𝛾𝛾)

• Uses
– Specification mining
– System comprehension / understanding
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Examples (LTL)

• G 𝑣𝑣𝑣𝑣𝑣𝑣
– G: “always”
– Solutions to query:  system invariants!

• G (𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑒𝑒𝑒𝑒𝑒𝑒)
– F: “eventually”
– 𝑒𝑒𝑒𝑒𝑒𝑒: true in error states
– Solutions to query:  states that invariably lead to a future error!

• Note:  multiple solutions usually!  Are generally interested in 
extremal ones (maximal, minimal)
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More Examples

• G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)
– 𝑚𝑚:  “Microsoft share price closes higher”
– Solutions to query:  states from which Microsoft share price is 

guaranteed to increase (eventually)!

• (𝑣𝑣𝑣𝑣𝑣𝑣 ∧ ¬𝑔𝑔𝑔𝑔) → (F 𝑔𝑔𝑔𝑔)
– 𝑔𝑔𝑔𝑔:  “Goal reached”
– Solutions to query:  states from which the goal configuration can be 

reached
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History of Query Checking

• Chan introduced notion in 2000 CAV paper for CTL
– Showed that some queries have unique strongest solutions
– Gave algorithm for computing strongest solutions in this case

• Subsequent developments for larger classes of CTL queries, some 
infinite-state systems by Bruns, Chechik, Godefroid, Gurfinkel, 
me(!) through early, mid 2000s

• Applications (e.g. “latent behavior detection” in UML, temporal-
logic planner explanations)

• Extensions to LTL by Chokler, Gurfinkel, Strichman (2011), Huang 
and me(!) 2017
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This Work

• For classical query checkers to work, you need model 𝑀𝑀
• What if you don’t have 𝑀𝑀?

– Could be proprietary
– Could also not exist (e.g. stock market)

• This work:  query checking (aka “query solving”) from observed 
system executions
– Given:  finite set of finite state sequences (“executions”), query
– Compute:  solutions to query that make it true for each execution
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Remainder of Talk

• Finite LTL (slightly different from LTL𝑓𝑓)
• Automata for Finite LTL formulas via tableaux
• Query checking using automata
• Proof of concept study
• Conclusion 
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Query Checking Generalizes Invariant Mining

• Given:  collection of system executions
• Compute: invariants as association rules = propositional implications

– Mining association rules = given states, look for associations rules that are 
(always / usually) true

– Algorithm:  Apriori (cf. Agrawal and Srikant 1994)
• Our earlier work:  using Apriori to mine invariants from MATLAB / Simulink, 

e.g.  G (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 → 𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) (automotive cruise control)
– RV 2010
– ACM TECS 2017
– SEFM 2018

• Query solving:  generalizes invariant mining in that user specifies temporal 
form of queries to be solved
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Finite LTL

• To have queries for finite sequences, need a logic for finite 
sequences

• LTL:  infinite sequences!
• Finite LTL:  LTL interpreted with respect to finite sequences
• Syntax

𝜑𝜑 ∷= 𝑎𝑎 ¬ 𝜑𝜑 𝜑𝜑 ∨ 𝜑𝜑 X 𝜑𝜑 𝜑𝜑 U 𝜑𝜑
𝑎𝑎 atomic proposition
¬ negation
∨ disjunction
X next-state
U until
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Finite LTL Semantics (1/2)

• States:  convey truth / falsity of atomic propositions
– If 𝐴𝐴 is (finite) set of all atomic propositions
– State 𝜎𝜎 ⊆ 𝐴𝐴 assigns true to all 𝑎𝑎 ∈ 𝜎𝜎, false to all 𝑎𝑎 ∉ 𝜎𝜎

• Regular LTL
– Formulas interpreted with respect to infinite sequences of states
– Infinite sequences always have

• At least one state
• A successor to every state in the sequence

• Finite sequences
– May be empty (𝜀𝜀)
– States do not always have successors in a sequence!
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Finite LTL Semantics

• Let 𝜋𝜋 ∈ 2𝐴𝐴 ∗ = 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 be a finite sequence of states
• We define 𝜋𝜋 ⊨ 𝜑𝜑 “𝜋𝜋 satisfies 𝜑𝜑”

– 𝜋𝜋 ⊨ 𝑎𝑎 iff 𝑎𝑎 ∈ 𝜎𝜎1
• So 𝜎𝜎1 must exist!
• Implication:  𝜀𝜀 ⊭ 𝑎𝑎
• Another implication:  𝜀𝜀 ⊨ ¬𝑎𝑎

– 𝜋𝜋 ⊨ X 𝜑𝜑 iff 𝜎𝜎2 ⋯𝜎𝜎𝑛𝑛 ⊨ 𝜑𝜑
• Again, 𝜎𝜎1 must exist!
• Implication:  𝜀𝜀 ⊭ X 𝜑𝜑 for any 𝜑𝜑
• Another implication:  𝜀𝜀 ⊨ ¬X¬𝜑𝜑 for any 𝜑𝜑

– 𝜋𝜋 ⊨ 𝜑𝜑1 U 𝜑𝜑2 iff 𝜎𝜎1 𝜎𝜎2 ⋯ 𝜎𝜎𝑖𝑖+1 𝜎𝜎𝑖𝑖 ⋯ 𝜎𝜎𝑛𝑛
• Suppose 𝜀𝜀 ⊨ 𝜑𝜑
• What satisfies true U 𝜑𝜑?
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Derived Operators in Finite LTL

• true ≝ 𝑎𝑎 ∨ ¬𝑎𝑎
• false ≝ ¬true
• 𝜑𝜑1 ∧ 𝜑𝜑2≝ ¬(¬𝜑𝜑1 ∨ ¬𝜑𝜑2)
• X 𝜑𝜑 ≝ ¬X¬𝜑𝜑 “weak next”
• 𝜑𝜑1 R 𝜑𝜑2 ≝ ¬(¬𝜑𝜑1 𝑈𝑈 ¬𝜑𝜑2) “release”
• F 𝜑𝜑 ≝ true U 𝜑𝜑 “eventually”
• G 𝜑𝜑 ≝ ¬F¬𝜑𝜑 “always”
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Workarounds!

• ¬𝑎𝑎
– 𝜀𝜀 ⊨ ¬ 𝑎𝑎
– 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 ⊨ ¬𝑎𝑎 ∧ X true iff 𝑛𝑛 ≥ 1 and 𝑎𝑎 ∉ 𝜎𝜎1

• F ¬𝑎𝑎
– 𝜋𝜋 ⊨ F¬𝑎𝑎 all 𝜋𝜋
– 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 ⊨ F (¬𝑎𝑎 ∧ X true) iff 𝑎𝑎 ∉ 𝜎𝜎𝑖𝑖 some 𝑖𝑖

• G 𝑎𝑎
– 𝜋𝜋 ⊭ G 𝑎𝑎 all 𝜋𝜋
– 𝜎𝜎1 ⋯𝜎𝜎𝑛𝑛 ⊨ G (𝑎𝑎 ∨ X false) iff 𝑎𝑎 ∈ 𝜎𝜎𝑖𝑖 all 𝑖𝑖
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Facts about Finite LTL

• ∅ ⊆ 𝐴𝐴 is state making all atomic propositions false
– Let 𝜙𝜙 be a propositional formula (no X, U, etc.)
– Then 𝜀𝜀 ⊨ 𝜙𝜙 iff ∅ ⊨ 𝜙𝜙

• This fact implies:
– Usual propositional identities hold (deMorgan, distributivity, etc.).
– A principled 𝑂𝑂(𝑛𝑛) strategy for encoding LTL𝑓𝑓 exists!

S. Huang and R. Cleaveland, “A tableau construction for Finite Linear-Time Temporal Logic”,  Journal of 
Logic and Algebraic Methods in Programming (2022).
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From (Finite) LTL to Automata

• Motivation for Finite LTL:  query checking over finite sets of system 
behaviors!

• Important mathematical questions
– Satisfiability:  is a (Finite) LTL formula satisfiable?
– Model checking:  do a system’s finite behaviors satisfy a given formula?
– Synthesis:  generate a sequence / system satisfying a given formula

• How to address these questions?  Automata
– Generate finite-state machines from formulas
– Use resulting machines as basis for analysis procedures

• Notation:  𝐿𝐿 𝜑𝜑 = 𝜋𝜋 ∈ 2𝐴𝐴 ∗ 𝜋𝜋 ⊨ 𝜑𝜑}
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Tableau Constructions

• Basis for generating automata from LTL:  tableaux
– Generate automata whose vertices are labeled by sets of formulas, 

transitions labeled by propositional states (= assignments of truth values 
to atomic propositions, recall)

– Key property:  sequences accepted by a given vertex are the sequences 
making the associated formula true

• For LTL, sequences are infinite, so automata are 𝜔𝜔-automata (e.g. 
Büchi) accepting infinite sequences

• For Finite LTL, regular finite automata suffice
– Automata accept / reject finite sequences
– Construction still associates formula with each vertex
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Example

• G(𝑟𝑟 → F 𝑔𝑔)
– 𝑟𝑟,𝑔𝑔 are atomic propositions standing for “request” and “grant”
– Property asserts that every request is eventually granted
– What is automaton for this Finite LTL formula?
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F 𝑔𝑔 ∧ G(𝑟𝑟 → F 𝑔𝑔)G(𝑟𝑟 → F 𝑔𝑔)
𝜎𝜎2

State 2𝐴𝐴

𝜎𝜎0 { }
𝜎𝜎1 {𝑔𝑔}
𝜎𝜎2 {𝑟𝑟}
𝜎𝜎3 {𝑔𝑔, 𝑟𝑟}

𝜎𝜎0,𝜎𝜎1,𝜎𝜎3

𝜎𝜎1,𝜎𝜎3

𝜎𝜎0,𝜎𝜎2



The Tableau Construction for Finite LTL
• Basic step

– Convert Finite LTL formula 𝜑𝜑 into automaton normal form (ANF)
• Literal ℓ: 𝑎𝑎 or ¬𝑎𝑎 for some 𝑎𝑎 ∈ 𝐴𝐴
• ANF clause:  ⋀ℓ ∧ N𝜑𝜑𝜑 where N is either X or X
• ANF:  ⋁𝐶𝐶 where each C is an ANF clause
• Example:  F 𝑎𝑎 (𝑎𝑎 atomic) can be converted into ANF formula  𝑎𝑎 ∨ X (F 𝑎𝑎)

– Turn each ANF clause 𝐶𝐶 = ⋀ℓ ∧ N𝜑𝜑𝜑 into transitions
– Accepting states:  those whose formulas are satisfied by ε (syntactically checkable)
– Result:  NFA 𝑀𝑀𝜑𝜑 with 𝐿𝐿 𝑀𝑀𝜑𝜑 = 𝐿𝐿(𝜑𝜑)

19

𝜑𝜑 𝜑𝜑𝜑
⋀ℓ



Discussion

• #states ≤ 2 𝜑𝜑

• Experimental evaluation (184 LTL formulas from Spot benchmark):  
on average, #states = 0.69 ⋅ |𝜑𝜑|

• Other methods for generating NFAs from Finite LTL go “through” 
e.g. Büchi automata (or alternating automata, …)
– Finite LTL 𝜑𝜑 translated into LTL 𝜑𝜑𝜑 over “infinite-ized” sequences
– Procedure used to convert 𝜑𝜑𝜑 to Büchi automaton
– Büchi automaton then converted to NFA for 𝜑𝜑𝜑

• Pros / cons
– Pro:  Highly optimized procedures for LTL-to-Büchi!
– Con:  Loss of connection between automaton states and formulas
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Finite LTL Queries

• … Finite LTL formulas with “holes” (denoted 𝑣𝑣𝑣𝑣𝑣𝑣)
– We write 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] to emphasize presence of 𝑣𝑣𝑣𝑣𝑣𝑣
– If 𝛾𝛾 is a formula then formula 𝜑𝜑[𝛾𝛾] is the instantiation of 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] by 𝛾𝛾

• Example
– Let 𝑚𝑚, 𝑎𝑎,𝑔𝑔 be atomic propositions reflecting “Microsoft / Amazon / Google 

share price rises” on a given day.
– State sequences:  daily stock information over period of days/weeks/etc.
– Query: 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 = G (𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)

• 𝑣𝑣𝑣𝑣𝑣𝑣 is hole
• 𝜑𝜑 𝑎𝑎 ∧ ¬𝑔𝑔 = G ( 𝑎𝑎 ∧ ¬𝑔𝑔 → F 𝑚𝑚) is instantiation of 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣] by 𝛾𝛾 = 𝑎𝑎 ∧ ¬𝑔𝑔
• Instantiation says:  “it is always the case that if Amazon goes up and Google does not 

on a given day, then Microsoft goes up eventually”
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The Finite LTL Query-Checking Problem

• Given:
– Π = 𝜋𝜋1, … ,𝜋𝜋𝑛𝑛 ⊆ 2𝐴𝐴 ∗

– Finite LTL query 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣]
• Compute:

𝑄𝑄𝑄𝑄 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 ,Π = all propositional 𝛾𝛾 such that 𝜋𝜋𝑖𝑖 ⊨ 𝜑𝜑[𝛾𝛾] all 𝑖𝑖
• E.g.

If 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 = G (𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚) then 𝑄𝑄𝑄𝑄(𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 ,Π) returns 
characterization of all states guaranteeing that Microsoft stock goes up 
eventually!
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Solving the Query-Checking Problem

• Brute force: enumerate all (semantically distinct) possible solutions
– If 𝐴𝐴 = 𝑛𝑛 then there are 2𝐴𝐴 possible states
– If there are 𝑚𝑚 states then there are 2𝑚𝑚 semantically distinct propositions

• Proposition = set of states (those making proposition true)
• For each subset of states there is a distinct proposition!

– So if 𝐴𝐴 = 𝑛𝑛 then there are 22𝑛𝑛 possible distinct propositions
• If 𝐴𝐴 = 2 then there are 222 = 24 = 16 distinct propositions

• If 𝐴𝐴 = 8 then there are 228 = 2256 ≈ 1078 = # of atoms in the observable universe 
possible propositions

• A better approach:  use automata!
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Automata and Query Checking

• Recall automaton-based approach to LTL model checking (= checking if 
every (infinite) execution 𝜋𝜋 ∈ 𝐿𝐿 𝑀𝑀 satisfies LTL formula 𝜑𝜑)
– Build Büchi automaton 𝐵𝐵¬𝜑𝜑 for ¬𝜑𝜑
– Check if 𝐿𝐿 𝑀𝑀 ∩ 𝐿𝐿 𝐵𝐵¬𝜑𝜑 = ∅ by composing 𝑀𝑀,𝐵𝐵¬𝜑𝜑

• We do something similar to compute 𝑄𝑄𝑄𝑄(Π,𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 )
– Negate query 𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣], obtaining ¬𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣]
– Make automaton 𝑀𝑀Π such that 𝐿𝐿 𝑀𝑀Π = Π
– Construct query automaton 𝑀𝑀¬𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 with property that for all propositional 𝛾𝛾, 
𝐿𝐿 𝑀𝑀¬𝜑𝜑 𝛾𝛾 = 𝐿𝐿(¬𝜑𝜑[𝛾𝛾])

– Compose 𝑀𝑀Π,𝑀𝑀¬𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 to obtain query automaton 𝑀𝑀Π,¬𝜑𝜑[𝑣𝑣𝑣𝑣𝑣𝑣]

– Compute all propositional 𝛾𝛾 such that 𝐿𝐿 𝑀𝑀Π,¬𝜑𝜑 𝛾𝛾 = ∅
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• Like (symbolic) NFAs constructed from Finite LTL except:
– States labeled by queries rather than formulas
– Transitions labeled by propositional queries rather than formulas
– Acceptance depends on 𝑣𝑣𝑣𝑣𝑣𝑣

• Example:  𝑀𝑀𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 where 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 = G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)

Query Automata
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F 𝑚𝑚 ∧ G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)G(𝑣𝑣𝑣𝑣𝑣𝑣 → F 𝑚𝑚)

𝑣𝑣𝑣𝑣𝑣𝑣

¬𝑣𝑣𝑣𝑣𝑣𝑣 ∨ 𝑚𝑚

𝑚𝑚

𝑣𝑣𝑣𝑣𝑣𝑣



Instantiating a Query Automaton

• If 𝑀𝑀[𝑣𝑣𝑣𝑣𝑣𝑣] is a query automaton and 𝛾𝛾 is a propositional 
formula then 𝑀𝑀[𝛾𝛾] is the finite automaton obtained by
– Instantiating all the queries in 𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣 with 𝛾𝛾; and
– Labeling all states whose instantiated query accept 𝜀𝜀 as accepting

• E.g. 𝑀𝑀 𝑎𝑎 ∨ ¬𝑔𝑔 :

26

F 𝑚𝑚 ∧ G((𝑎𝑎 ∨ ¬𝑔𝑔) → F 𝑚𝑚)G((𝑎𝑎 ∨ ¬𝑔𝑔) → F 𝑚𝑚)

𝑎𝑎 ∨ ¬𝑔𝑔

¬(𝑎𝑎 ∨ ¬𝑔𝑔) ∨ 𝑚𝑚

𝑚𝑚

𝑎𝑎 ∨ ¬𝑔𝑔



Constructing Query Automata

• Tableau method for Finite LTL can be used to construct query 
automata for Finite LTL queries!
– Treat 𝑣𝑣𝑣𝑣𝑣𝑣 as atomic proposition
– Apply Finite LTL tableau method
– Ignore accepting states in resulting automata

• Simplification:  queries in states can be replaced by 
propositional queries; see paper

S. Huang and R. Cleaveland.  “Temporal-Logic query checking over finite data streams,” International 
Journal on Software Tools for Technology Transfer (2022).  
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Shattering Query Automata

• Key operation for 𝑄𝑄𝑄𝑄(Π,𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 ):  find 𝛾𝛾 so that 𝐿𝐿 𝑀𝑀Π,¬𝜑𝜑 𝛾𝛾 = ∅
• The shattering problem for finite-query automata

– Given:  𝑀𝑀𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣

– Compute:  all 𝛾𝛾 such that 𝐿𝐿(𝑀𝑀𝜑𝜑 𝛾𝛾 ) = ∅
• General approach:  systematically search for 𝛾𝛾 that shatter edge 

queries (i.e. make 𝜑𝜑 𝛾𝛾 ≡ false), make states non-accepting.
• E.g.

– Suppose transition label is 𝛾𝛾 𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣 ∧ (𝑎𝑎 ∨ 𝑏𝑏)
– 𝛾𝛾 ¬𝑎𝑎 ∧ ¬𝑏𝑏 = (¬𝑎𝑎 ∧ ¬𝑏𝑏) ∧ 𝑎𝑎 ∨ 𝑏𝑏 ≡ false
– Setting 𝑣𝑣𝑣𝑣𝑣𝑣 = ¬𝑎𝑎 ∧ ¬𝑏𝑏 shatters this edge!
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Complexity

• 𝑂𝑂(22 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 ) in worst case
• In practice: 𝑂𝑂(2 𝜑𝜑 𝑣𝑣𝑣𝑣𝑣𝑣 )
• Optimizations in paper improve run-time 
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Pilot Study

Experimental evaluation on synthetic data from past data-mining 
competitions involving product sales, promotions
• Can deal with up to six atomic propositions, depending on 

sequence length
• Some correlations among promotions / products and other 

products detected
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Conclusions

• Finite LTL queries:  “templates” for formal specifications
• Query checking:  given observations of system behavior, figure out how to 

instantiate templates so every sequence satisfies them
• Approach is based on connection between Finite LTL formulas, automata
• “Proof of concept” implementation and experimental study
• Future directions

– More thorough evaluation
– Applications!
– Other logics besides Finite LTL (mu-calculus, Allen intervals, time, …)
– Relaxed query checking (“near invariants”)
– Noisy LTL
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THANKS!

Rance Cleaveland
rance@cs.umd.edu
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