Query Checking for Finite Linear-Time Temporal Logic

Rance Cleaveland

Department of Computer Science University of Maryland USA

Research supported by NSF, Office of Naval Research

Joint work with Samuel Huang

This Talk

- How to solve queries in Finite Linear Temporal Logic (LTL)!
 - What is a query?
 - Why do you want to solve them?
 - What's (Finite) LTL?
- Agenda
 - A bit about query checking
 - A bit about Finite LTL and Finite LTL queries
 - A bit about automata and Finite LTL
 - A bit about using automata to solve Finite LTL queries
 - A bit about a pilot study
 - Conclusion!

Query Checking (1/2)

- Traditional system specification via temporal logic
 - Write some formulas ϕ
 - Develop a system M
 - Check if *M* satisfies each φ ($M \vDash \varphi$)
- In practice: You often have M, but not ϕ
- Query checking: a way to extract φ from M

Query Checking (2/2)

- Queries = formulas with "holes" (missing subformulas)
- The query checking problem, classically
 - Given <mark>M</mark>
 - Given query $\varphi[var]$ (var is the hole)
 - Compute all (propositional) formulas γ such that M satisfies $\varphi[\gamma]$ ($\varphi[\gamma]$ is $\varphi[var]$ with all occurrences of var replaced by γ)
- Uses
 - Specification mining
 - System comprehension / understanding

Examples (LTL)

- G var
 - G: "always"
 - Solutions to query: system invariants!
- $G(var \rightarrow Ferr)$
 - F: "eventually"
 - err: true in error states
 - Solutions to query: states that invariably lead to a future error!
- Note: multiple solutions usually! Are generally interested in extremal ones (maximal, minimal)

More Examples

- $G(var \rightarrow Fm)$
 - -m: "Microsoft share price closes higher"
 - Solutions to query: states from which Microsoft share price is guaranteed to increase (eventually)!
- $(var \land \neg gr) \rightarrow (F gr)$
 - -gr: "Goal reached"
 - Solutions to query: states from which the goal configuration can be reached

- Chan introduced notion in 2000 CAV paper for CTL
 - Showed that some queries have unique strongest solutions
 - Gave algorithm for computing strongest solutions in this case
- Subsequent developments for larger classes of CTL queries, some infinite-state systems by Bruns, Chechik, Godefroid, Gurfinkel, me(!) through early, mid 2000s
- Applications (e.g. "latent behavior detection" in UML, temporallogic planner explanations)
- Extensions to LTL by Chokler, Gurfinkel, Strichman (2011), Huang and me(!) 2017

This Work

- For classical query checkers to work, you need model M
- What if you don't have *M*?
 - Could be proprietary
 - Could also not exist (e.g. stock market)
- This work: query checking (aka "query solving") from observed system executions
 - Given: finite set of finite state sequences ("executions"), query
 - Compute: solutions to query that make it true for each execution

Remainder of Talk

- Finite LTL (slightly different from LTL_f)
- Automata for Finite LTL formulas via tableaux
- Query checking using automata
- Proof of concept study
- Conclusion

Query Checking Generalizes Invariant Mining

- Given: collection of system executions
- Compute: invariants as association rules = propositional implications
 - Mining association rules = given states, look for associations rules that are (always / usually) true
 - Algorithm: Apriori (cf. Agrawal and Srikant 1994)
- Our earlier work: using Apriori to mine invariants from MATLAB / Simulink, e.g. G (brake → cc_inactive) (automotive cruise control)
 - RV 2010
 - ACM TECS 2017
 - SEFM 2018
- Query solving: generalizes invariant mining in that user specifies temporal form of queries to be solved

Finite LTL

- To have queries for finite sequences, need a logic for finite sequences
- LTL: infinite sequences!
- Finite LTL: LTL interpreted with respect to finite sequences
- Syntax

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \lor \varphi$$

- *a* atomic proposition
- negation
- V disjunction
- X next-state
- U until

Finite LTL Semantics (1/2)

- States: convey truth / falsity of atomic propositions
 - If A is (finite) set of all atomic propositions
 - State $\sigma \subseteq A$ assigns true to all $a \in \sigma$, false to all $a \notin \sigma$
- Regular LTL
 - Formulas interpreted with respect to infinite sequences of states
 - Infinite sequences always have
 - At least one state
 - A successor to every state in the sequence
- Finite sequences
 - May be empty (ε)
 - States do not always have successors in a sequence!

Finite LTL Semantics

- Let $\pi \in (2^A)^* = \sigma_1 \cdots \sigma_n$ be a finite sequence of states
- We define $\pi \vDash \varphi$ " π satisfies φ "
 - $-\pi \vDash a$ iff $a \in \sigma_1$
 - So σ_1 must exist!
 - Implication: $\varepsilon \not\models a$
 - Another implication: $\varepsilon \models \neg a$
 - $\pi \vDash \mathbf{X} \varphi \text{ iff } \sigma_2 \cdots \sigma_n \vDash \varphi$
 - Again, σ_1 must exist!
 - Implication: $\varepsilon \not\models \mathbf{X} \varphi$ for any φ
 - Another implication: $\varepsilon \models \neg X \neg \phi$ for any ϕ
 - $-\pi \models \varphi_1 \cup \varphi_2$ iff

 $\sigma_1 \ \sigma_2 \ \cdots \ \sigma_{i+1} \ \sigma_i \ \cdots \ \sigma_n$

. . . .

 $\varphi_1 \quad \varphi_1 \qquad \varphi_1 \qquad \varphi_2$

- Suppose $\varepsilon \vDash \varphi$
- What satisfies true U φ ?

13

Derived Operators in Finite LTL

- true $\stackrel{\text{\tiny def}}{=} a \lor \neg a$
- false $\stackrel{\text{\tiny def}}{=} \neg \text{true}$
- $\varphi_1 \wedge \varphi_2 \stackrel{\text{\tiny def}}{=} \neg (\neg \varphi_1 \vee \neg \varphi_2)$
- $\overline{\mathbf{X}} \boldsymbol{\varphi} \stackrel{\text{\tiny def}}{=} \neg \mathbf{X} \neg \boldsymbol{\varphi}$
- $\varphi_1 \operatorname{R} \varphi_2 \stackrel{\text{\tiny def}}{=} \neg (\neg \varphi_1 U \neg \varphi_2)$
- $\mathbf{F} \boldsymbol{\varphi} \stackrel{\text{\tiny def}}{=} \operatorname{true} \mathbf{U} \boldsymbol{\varphi}$
- $\mathbf{G} \varphi \stackrel{\text{\tiny def}}{=} \neg \mathbf{F} \neg \varphi$

"weak next"

- "release"
- "eventually" "always"

Workarounds!

• $\neg a$ $-\varepsilon \models \neg a$ $-\sigma_1 \cdots \sigma_n \models (\neg a) \land X$ true iff $n \ge 1$ and $a \notin \sigma_1$ • F ¬*a* $-\pi \models F \neg a \text{ all } \pi$ $-\sigma_1 \cdots \sigma_n \models \mathbf{F} (\neg a \land \mathbf{X} \text{ true}) \text{ iff } a \notin \sigma_i \text{ some } i$ • G a $-\pi \nvDash G a \text{ all } \pi$ $-\sigma_1 \cdots \sigma_n \models \mathbf{G} (a \lor \overline{\mathbf{X}} \text{ false}) \text{ iff } a \in \sigma_i \text{ all } i$

Facts about Finite LTL

- $\emptyset \subseteq A$ is state making all atomic propositions false
 - Let ϕ be a propositional formula (no X, U, etc.)
 - Then $\varepsilon \vDash \phi$ iff $\emptyset \vDash \phi$
- This fact implies:
 - Usual propositional identities hold (deMorgan, distributivity, etc.).
 - A principled O(n) strategy for encoding LTL_f exists!

S. Huang and R. Cleaveland, "A tableau construction for Finite Linear-Time Temporal Logic", *Journal of Logic and Algebraic Methods in Programming* (2022).

From (Finite) LTL to Automata

- Motivation for Finite LTL: query checking over finite sets of system behaviors!
- Important mathematical questions
 - Satisfiability: is a (Finite) LTL formula satisfiable?
 - Model checking: do a system's finite behaviors satisfy a given formula?
 - Synthesis: generate a sequence / system satisfying a given formula
- How to address these questions? Automata
 - Generate finite-state machines from formulas
 - Use resulting machines as basis for analysis procedures
- Notation: $L(\varphi) = \{\pi \in (2^A)^* | \pi \vDash \varphi\}$

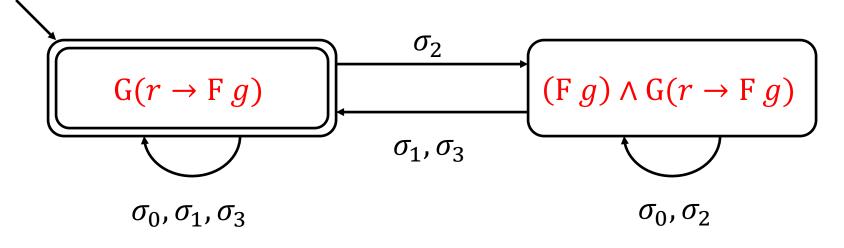
Tableau Constructions

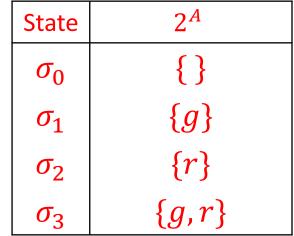
- Basis for generating automata from LTL: tableaux
 - Generate automata whose vertices are labeled by sets of formulas, transitions labeled by propositional states (= assignments of truth values to atomic propositions, recall)
 - Key property: sequences accepted by a given vertex are the sequences making the associated formula true
- For LTL, sequences are infinite, so automata are ω-automata (e.g. Büchi) accepting infinite sequences
- For Finite LTL, regular finite automata suffice
 - Automata accept / reject finite sequences
 - Construction still associates formula with each vertex

Example

• $G(r \rightarrow Fg)$

- -r,g are atomic propositions standing for "request" and "grant"
- Property asserts that every request is eventually granted
- What is automaton for this Finite LTL formula?

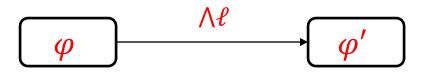




The Tableau Construction for Finite LTL

- Basic step
 - Convert Finite LTL formula φ into automaton normal form (ANF)
 - Literal ℓ : $a \text{ or } \neg a \text{ for some } a \in A$
 - ANF clause: $(\Lambda \ell) \wedge N \varphi'$ where N is either X or \overline{X}
 - ANF: $\bigvee C$ where each C is an ANF clause
 - Example: F a (a atomic) can be converted into ANF formula $a \lor X$ (F a)
 - Turn each ANF clause $C = \Lambda \ell \wedge N \varphi'$ into transitions
 - Accepting states: those whose formulas are satisfied by ε (syntactically checkable)

- Result: NFA
$$M_{\varphi}$$
 with $L(M_{\varphi}) = L(\varphi)$



Discussion

- #states $\leq 2^{|\varphi|}$
- Experimental evaluation (184 LTL formulas from Spot benchmark): on average, #states = $0.69 \cdot |\varphi|$
- Other methods for generating NFAs from Finite LTL go "through" e.g. Büchi automata (or alternating automata, ...)
 - Finite LTL φ translated into LTL φ' over "infinite-ized" sequences
 - Procedure used to convert φ' to Büchi automaton
 - Büchi automaton then converted to NFA for φ'
- Pros / cons
 - Pro: Highly optimized procedures for LTL-to-Büchi!
 - Con: Loss of connection between automaton states and formulas

Finite LTL Queries

- ... Finite LTL formulas with "holes" (denoted *var*)
 - We write $\varphi[var]$ to emphasize presence of var
 - If γ is a formula then formula $\varphi[\gamma]$ is the instantiation of $\varphi[var]$ by γ
- Example
 - Let m, a, g be atomic propositions reflecting "Microsoft / Amazon / Google share price rises" on a given day.
 - State sequences: daily stock information over period of days/weeks/etc.
 - Query: $\varphi[var] = G(var \rightarrow Fm)$
 - *var* is hole
 - $\varphi[a \land \neg g] = G((a \land \neg g) \rightarrow Fm)$ is instantiation of $\varphi[var]$ by $\gamma = a \land \neg g$
 - Instantiation says: "it is always the case that if Amazon goes up and Google does not on a given day, then Microsoft goes up eventually"

The Finite LTL Query-Checking Problem

- Given:
 - $-\Pi = \{\pi_1, \dots, \pi_n\} \subseteq (2^A)^*$
 - Finite LTL query $\varphi[var]$
- Compute:

 $QC(\varphi[var],\Pi) = \text{all propositional } \gamma \text{ such that } \pi_i \vDash \varphi[\gamma] \text{ all } i$

• E.g.

If $\varphi[var] = G(var \rightarrow Fm)$ then $QC(\varphi[var], \Pi)$ returns characterization of all states guaranteeing that Microsoft stock goes up eventually!

Solving the Query-Checking Problem

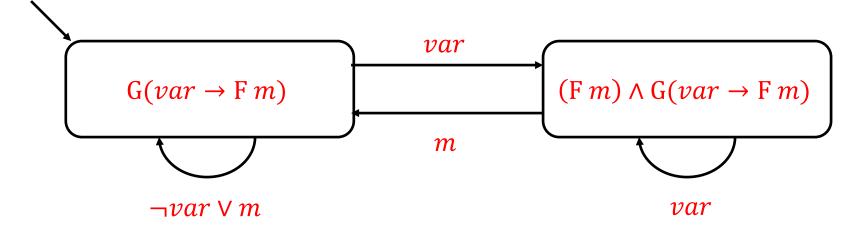
- Brute force: enumerate all (semantically distinct) possible solutions
 - If |A| = n then there are 2^A possible states
 - If there are m states then there are 2^m semantically distinct propositions
 - Proposition = set of states (those making proposition true)
 - For each subset of states there is a distinct proposition!
 - So if |A| = n then there are 2^{2^n} possible distinct propositions
 - If |A| = 2 then there are $2^{2^2} = 2^4 = 16$ distinct propositions
 - If |A| = 8 then there are $2^{2^8} = 2^{256} \approx 10^{78} = #$ of atoms in the observable universe possible propositions
- A better approach: use automata!

Automata and Query Checking

- Recall automaton-based approach to LTL model checking (= checking if every (infinite) execution $\pi \in L(M)$ satisfies LTL formula φ)
 - Build Büchi automaton $B_{\neg \varphi}$ for $\neg \varphi$
 - Check if $L(M) \cap L(B_{\neg \varphi}) = \emptyset$ by composing $M, B_{\neg \varphi}$
- We do something similar to compute $QC(\Pi, \varphi[var])$
 - Negate query $\varphi[var]$, obtaining $\neg \varphi[var]$
 - Make automaton M_{Π} such that $L(M_{\Pi}) = \Pi$
 - Construct query automaton $M_{\neg \varphi[var]}$ with property that for all propositional γ , $L(M_{\neg \varphi[\gamma]}) = L(\neg \varphi[\gamma])$
 - Compose M_{Π} , $M_{\neg \varphi[var]}$ to obtain query automaton $M_{\Pi, \neg \varphi[var]}$
 - Compute all propositional γ such that $L(M_{\Pi,\neg\varphi[\gamma]}) = \emptyset$

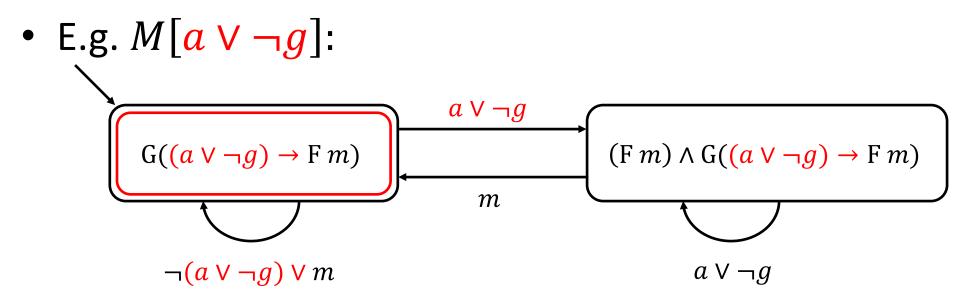
Query Automata

- Like (symbolic) NFAs constructed from Finite LTL except:
 - States labeled by queries rather than formulas
 - Transitions labeled by propositional queries rather than formulas
 - Acceptance depends on var
- Example: $M_{\varphi[var]}$ where $\varphi[var] = G(var \rightarrow Fm)$



Instantiating a Query Automaton

- If M[var] is a query automaton and γ is a propositional formula then $M[\gamma]$ is the finite automaton obtained by
 - Instantiating all the queries in M[var] with γ ; and
 - Labeling all states whose instantiated query accept ε as accepting



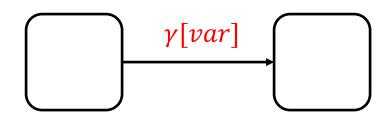
Constructing Query Automata

- Tableau method for Finite LTL can be used to construct query automata for Finite LTL queries!
 - Treat *var* as atomic proposition
 - Apply Finite LTL tableau method
 - Ignore accepting states in resulting automata
- Simplification: queries in states can be replaced by propositional queries; see paper

S. Huang and R. Cleaveland. "Temporal-Logic query checking over finite data streams," International Journal on Software Tools for Technology Transfer (2022).

Shattering Query Automata

- NVERSITA NVERSITA 18 RYLAN
- Key operation for $QC(\Pi, \varphi[var])$: find γ so that $L(M_{\Pi, \neg \varphi[\gamma]}) = \emptyset$
- The shattering problem for finite-query automata
 - Given: $M_{\varphi[var]}$
 - Compute: all γ such that $L(M_{\varphi[\gamma]}) = \emptyset$
- General approach: systematically search for γ that shatter edge queries (i.e. make $\varphi[\gamma] \equiv$ false), make states non-accepting.
- E.g.
 - Suppose transition label is $\gamma[var] = var \land (a \lor b)$
 - $-\gamma[\neg a \land \neg b] = (\neg a \land \neg b) \land (a \lor b) \equiv \text{false}$
 - Setting $var = \neg a \land \neg b$ shatters this edge!



Complexity

- $O(2^{2^{|\varphi[var]|}})$ in worst case
- In practice: $O(2^{|\varphi[var]|})$
- Optimizations in paper improve run-time

Pilot Study

Experimental evaluation on synthetic data from past data-mining competitions involving product sales, promotions

- Can deal with up to six atomic propositions, depending on sequence length
- Some correlations among promotions / products and other products detected

Conclusions

- Finite LTL queries: "templates" for formal specifications
- Query checking: given observations of system behavior, figure out how to instantiate templates so every sequence satisfies them
- Approach is based on connection between Finite LTL formulas, automata
- "Proof of concept" implementation and experimental study
- Future directions
 - More thorough evaluation
 - Applications!
 - Other logics besides Finite LTL (mu-calculus, Allen intervals, time, ...)
 - Relaxed query checking ("near invariants")
 - Noisy LTL

THANKS!

Rance Cleaveland rance@cs.umd.edu