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The Cooking Domain of TextWorld[1]

1. Find Cookbook 2. Prepare Recipe

[1] Côté et al, 2019

● Grab the red potato

● Chop the red potato

● Fry the red potato

● Prepare meal

https://arxiv.org/search/cs?searchtype=author&query=C%C3%B4t%C3%A9%2C+M
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GATA
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GATA

RL agent augmented with dynamic long-term memory.
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GATA

● player-has-apple

● player-at-kitchen

● apple-needs-chop

Captures relations about objects:

RL agent augmented with dynamic long-term memory.
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GATA Does Not Follow Instructions

● GATA often doesn’t read the cookbook
● GATA blindly grabs and prepares ingredients, without completing the task
● The presence or absence of instructions does not change performance
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GATA Does Not Follow Instructions

GATA is unable to understand and follow complex instructions in 
natural language. 
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1. Natural Language to LTL

Natural Language Observation LTL Instructions
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Natural Language Observation LTL Instructions

Automate with GPT-3!
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1. Natural Language to LTL

Natural Language Observation LTL Instructions

Automate with GPT-3!

● Strong few-shot translation
○ 93.2% correct after seeing six examples
○ 5.6% correct except for parentheses

● OOD generalization
○ unseen adjectives (e.g. is_grilled)
○ unseen nouns (e.g. carrot)
○ unseen compositions of LTL
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2.  LTL Progression

Predicates (e.g. player-has-apple) are interpreted 
using GATA’s learned beliefs

● Does not require a ground-truth oracle/labelling function
● LTL progression can be effective with noisy, learned models of 

predicates
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3.  LTL-conditioned Policy
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Results

- Superior performance over baselines and SoTA
- Ablations highlight the importance of progression
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Results
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Takeaway

● SoTA TextWorld RL agents are impervious to instructions

● Translate natural language instructions into LTL
○ compositional syntax and semantics
○ monitor progress towards instruction completion

● Experiments with 500+ games show superior performance using LTL

● Applicable to a diversity of sequential decision-making tasks
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Learning to Follow Instructions
in Text-Based Games

Read the full paper!
Email us:

{mathieutuli,andrewli,pashootan,toryn,sheila}@cs.toronto.edu
ssanner@mie.utoronto.ca

Our code can be found at: 
https://github.com/MathieuTuli/LTL-GATA

https://github.com/MathieuTuli/LTL-GATA

