
Temporal Logic
(Goal) Specifications

for
 Automated Planning

Alberto Camacho
acamacho@cs.toronto.edu

TLf@AAAI-SSS'23
March 27, 2023

This work was conducted while
affiliated with:

It takes a village…

2

Sheila Mcilraith Christian Muise Jorge Baier Eleni Triantafillou

Meghyn Bienvenu Toryn Klassen Rodrigo Toro Icarte Rick ValenzanoScott Sanner

Anonymous reviewers

You?

We want to synthesize strategies for sequential decision making…
… to operate in a world that is potentially non-deterministic
… to satisfy complex goals that may be temporally extended
… in a way that we can offer correctness guarantees.

3

4

How can we specify
problems?

- FOND planning
- Env. Fairness

- Reactive synthesis

How can we solve
planning problems?

- Automata goal
representations

- FOND planners as a
tool

How can we specify
goals in planning?

- Final-state condition
- Temporal logics

- on finite traces
- on infinite traces

Complexity results (Theory and Practice)

I Will Talk About…

Fully Observable Non-Deterministic (FOND) planning
In FOND planning, the agent is given:

● A model of the dynamics of the world.
● The initial state.
● The “goal”.

The agent can perform actions:

● Actions change properties of the world state.
● Action effects are non-deterministic

(i.e., the effect can be one among many).

Solutions are policies, or agent strategies
to achieve the goal, regardless of the
non-determinism.

5

fly(toronto, san_francisco)

sunny

fog
gy

FOND planning usually presumes that the environment is “fair”.

Fairness: all the action effects occur if actions are executed infinitely often.

We consider two types of solutions to FOND planning:

- Strong solutions are robust to all the environment non-determinism.
- Strong-cyclic solutions presume that the environment is fair.

Environment Fairness in FOND Planning

6

How can we specify problems?

● Usually, in PDDL or SAS+.

PDDL describes actions1 in terms of:
● Action preconditions.
● Action effects (non-deterministic).

Hey! where is fairness?

● Fairness needs not be specified!

[1] Note, actions have Markovian preconditions and effects.

Specifying FOND planning problems

7

FOND Problem =
FOND

Domain + Initial
State + Goal

(:action fly
:parameters (?orig, ?dest)
:precondition
 (agent-at ?orig)
:effect
 (and
 (not (agent-at ?orig))
 (agent-at ?dest)
 (oneof

(weather-at ?dest ?sunny)
(weather-at ?dest ?foggy)

)
)

)

Non-deterministic action pick-up in PDDL.

8

How can we specify
problems?

- FOND planning
- Env. Fairness

- Reactive synthesis

How can we solve
planning problems?

- Automata goal
representations

- FOND planners as a
tool

How can we specify
goals in planning?

- Final-state condition
- Temporal logics

- on finite traces
- on infinite traces

Complexity results (Theory and Practice)

I Will Talk About…

Planning for Temporally Extended Goals
In Planning, goals are typically final-state conditions.

● There is an implicit condition that plans terminate.
● Existing FOND planning tools are very optimized, but can only handle final-state goals.

Is Planning for final-state conditions enough?

● No! In many real-world situations we have to deal with safety, liveness,
and other temporally extended properties that refer to the whole trajectory of visited states.

Planning for temporally extended goals in deterministic domains dates back from the 90s1.
In the last decade, we have studied it in-depth for FOND domains.

[1] Fahiem Bacchus, Froduald Kabanza. Planning for Temporally Extended Goals. AAAI/IAAI, Vol. 2 1996.

9

Syntax of Linear Temporal Logic:
Atomic propositions (can be world features)

Logical connectives (⋀, ⋁, ￢)
Basic Temporal modalities:
● Next (⭘)
● Until (U)

Other temporal modalities:
● Always (▢), Eventually (♢), Release (R),

Weak-Until (W), Weak-Next (⚫), …

Examples:

Goals and Specifications in Linear Temporal Logic

10

Semantics of Linear Temporal Logic:

● LTL: evaluated over infinite-length traces
● LTLf: evaluated over finite-length traces

In English “eat until you are not hungry”

LTLf formula eat U ￢hungry

Trace {eat, hungry}, {eat, hungry}, {}

In English “after each request there is some response”

LTLf formula ▢ (req → ⭘ ♢ resp)

Trace {req}, {}, {}, {resp}, {}, {req}, {}, {req}, {resp}

In English “the lights must be turned on if it is dark outside,
except when nobody is inside the room”

LTLf formula ▢ (⭘ lights_on ↔ nobody ^ dark)

Trace {nobody, dark}, {nobody,lights_on}, {}, {}, …

A variety of Temporal Logics to Choose From
Temporally extended goals can refer to finite- or infinite-length trajectories.

Languages used to specify goals:

● For non-terminating programs: LTL
● For terminating programs: f-LTL, LTLf, LDLf, Past LTL, f-LTL-RE, PDDL3 temporal operators, …

In general, there is no temporal language that is “better than” another in all scenarios.
For example, LDLf is more expressive than LTLf, but LTLf is simpler and easier to interpret.

11

12

Can we specify FOND domains with temporal logics as well?

Yes, but…

Let me first introduce the model for reactive synthesis.

13

How can we specify
problems?

- FOND planning
- Env. Fairness

- Reactive synthesis

How can we solve
planning problems?

- Automata goal
representations

- FOND planners as a
tool

How can we specify
goals in planning?

- Final-state condition
- Temporal logics

- on finite traces
- on infinite traces

Complexity results (Theory and Practice)

I Will Talk About…

Specification: a tuple〈X, Y, φ〉

X: a set of environment variables
Y: a set of agent variables
φ: a temporally extended formula over X∪Y

Reactive Synthesis

14

Y1⊆Y

X1⊆X

X2⊆X

Y2⊆Y

…

A play is a sequence (X1∪Y1), (X2∪Y2), …

Everything is embedded in a monolithic specification formula, φ.

φenvironment constraints

environment assumptions

agent objectives

safety requirements

initial conditions

Synthesis problem: computing a solution.
Realizability problem: determine whether a solution exists.

Problems
are usually
specified in

TLSF.

Solutions:
An agent strategy σ: (X∪Y)* → 2X

so that all the generated plays satisfy the specification formula,
φ, regardless how the environment player moves.

Can we specify FOND domains with temporal logics as well?

15

Yes, but it is not practical.

Encoding the action dynamics:

Further, encoding FOND planning as LTL synthesis:1

(θe→θs)⋀(θe→(ψsW￢ψe))⋀((▢ ψe ⋀ θe)→φG))

[1] Alberto Camacho, Meghyn Bienvenu, Sheila A. McIlraith. Towards a Unified View of AI Planning and Reactive Synthesis. ICAPS 2019.

FOND Planning Reactive Synthesis

Environment variables F: set of fluents X: uncontrollable variables

Agent variables A: set of actions Y: controllable variables

Initial environment conds φI: initial state θe: INITIALLY formula

Initial agent conditions – θs: PRESET formula

Agent constraints Pre: action preconds ψS: ASSERT formula

Environment constraints Eff: action effects ψe: REQUIRE formula

Agent objectives φG: goal condition φG: GUARANTEE formula

Environment assumptions fairness φe: ASSUME formula

Our lesson: Domains in PDDL; Goals in Temporal Logics
Advantages of PDDL planning:

● Domains are more compact.
● Frame axioms need not be specified explicitly

○ PDDL actions describe world change, and everything else is
assumed to stay the same.

● Fairness does not need to be specified explicitly.
○ strong-cyclic FOND planners deal with fairness procedurally.
○ Describing fairness in LTL is involved.

[1] Sebastian Sardiña, Nicolás D'Ippolito. Towards Fully Observable Non-Deterministic Planning as
Assumption-based Automatic Synthesis. IJCAI 2015.
[2] Benjamin Aminof, Giuseppe De Giacomo, Sasha Rubin. Stochastic Fairness and Language-Theoretic
Fairness in Planning in Nondeterministic Domains. ICAPS 2020.

16

(:action fly
:parameters (?orig, ?dest)
:precondition
 (agent-at ?orig)
:effect
 (and
 (not (agent-at ?orig))
 (agent-at ?dest)
 (oneof

(weather-at ?dest ?sunny)
(weather-at ?dest ?foggy)

)
)

)

Non-deterministic action pick-up in PDDL.

This LTL formula describes fairness.1
When goals are temporally extended,
describing fairness is more tricky.2

17

How can we specify
problems?

- FOND planning
- Env. Fairness

- Reactive synthesis

How can we solve
planning problems?

- Automata goal
representations

- FOND planners as a
tool

How can we specify
goals in planning?

- Final-state condition
- Temporal logics

- on finite traces
- on infinite traces

Complexity results (Theory and Practice)

I Will Talk About…

Review on Finite State Automata

18

(a) DFW automaton for LTLf formula FG p

(b) NBW automaton for LTL formula FG p

(c) UCW automaton for LTL formula FG p

Finite state automata can capture temporally extended properties of
finite- and infinite-length traces.

Infinite-word automata:
- Non-deterministic Buchi Word (NBW) automata
- Deterministic Buchi Word (DBW) automata
- Universal Co-Buchi Word (UCW) automata

Finite-word automata:
- Non-deterministic Finite Word (NFW) automata
- Deterministic Finite Word (DFW) automata
- Non-deterministic k-Buchi Word (NkBW) automata
- Universal k-Co-Buchi Word (UkCW) automata

Automata Transformations of Temporal Logics

19

Transformation

High-level formal languages

LTL,
LTLf,
LDLf,
PLTL,
PDDL3,
Regex,
…

Finite State Automata

LTL→NBW → DBW
LTL → UCW, UkCW, NkCW
LTLf → NFW → DFW
LDLf →NFW →DFW
PLTL → DFW
PDDL3 → DFW
Regex → NBW, NFW, ...

EXP EXP

EXP

EXP EXP

EXP EXP

EXP

EXP

bounded
plan solvability

bounded
plan synthesis

strong cyclic FOND

Compilations to FOND planning with final-state goals

UCW FOND UkCW FOND,
k=1,2,...

NkBW FOND,
k=1,2,...

compute
solutions

determine
solvability

strong
LTL FOND

compilation

NBW FOND
compilation

strong FONDLTL
FOND

strong-cyclic
LTL FOND NBW FOND strong-cyclic FOND

strong
LTLf FOND

LTLf
FOND strong-cyclic

LTLf FOND NFW FOND strong-cyclic FOND

NFW FOND strong FOND

20

Beyond LTL and LTLf:
The same approach is
valid for any goal
specification language
that can be
transformed into finite
state automata.

compilation

compilation

compilation

FOND planning
with

automata goals

(automata are easy to determinize)

FOND planning
with

final-state goals

FOND planning
with

final-state goals

FOND planning
with

automata goals

(automata are difficult to determinize)

bounded
plan solvability

bounded
plan synthesis

strong cyclic FOND

Compilations to FOND planning with final-state goals

UCW FOND UkCW FOND,
k=1,2,...

NkBW FOND,
k=1,2,...

compute
solutions

determine
solvability

strong
LTL FOND

compilation

NBW FOND
compilation

strong FONDLTL
FOND

strong-cyclic
LTL FOND NBW FOND strong-cyclic FOND

strong
LTLf FOND

LTLf
FOND strong-cyclic

LTLf FOND NFW FOND strong-cyclic FOND

NFW FOND strong FOND

21

Beyond LTL and LTLf:
The same approach is
valid for any goal
specification language
that can be
transformed into finite
state automata.

compilation

compilation

compilation

FOND planning
with

final-state goals

FOND planning
with

final-state goals

bounded
plan solvability

bounded
plan synthesis

strong cyclic FOND

Compilations to FOND planning with final-state goals

UCW FOND UkCW FOND,
k=1,2,...

NkBW FOND,
k=1,2,...

compute
solutions

determine
solvability

strong
LTL FOND

compilation

NBW FOND
compilation

strong FONDLTL
FOND

strong-cyclic
LTL FOND NBW FOND strong-cyclic FOND

strong
LTLf FOND

LTLf
FOND strong-cyclic

LTLf FOND NFW FOND strong-cyclic FOND

NFW FOND strong FOND

22

Beyond LTL and LTLf:
The same approach is
valid for any goal
specification language
that can be
transformed into finite
state automata.

compilation

compilation

compilation

Advantages of our Algorithmic Approach

23

Automata-based methods can handle a
diversity of goal specifications that can be
transformed into automata (LTLf, LDLf, …).

Compilation-based methods enable the
use of existing highly-optimized planners
(which are only capable of handling
final-state goals) as a tool for the broader
class of temporally extended goals.

Summary of compilation-based approaches to FOND planning with
temporally extended goals. They can take automata goal representations.

24

How can we specify
problems?

- FOND planning
- Env. Fairness

- Reactive synthesis

How can we solve
planning problems?

- Automata goal
representations

- FOND planners as a
tool

How can we specify
goals in planning?

- Final-state condition
- Temporal logics

- on finite traces
- on infinite traces

Complexity results (Theory and Practice)

I Will Talk About…

Complexity results
We know very well the complexity of FOND planning with temporally extended goals.

In summary:

● domain complexity: 1EXP-complete
● goal complexity: it depends on

the goal representation:
○ 2EXP-complete for LTLf
○ 1EXP-complete for PLTL
○ it is tied to the worst-case explosion

of automata goal transformations.

● fairness does not influence complexity.

25

Experimental Results

26

Lessons learned:1

● Stochastic fair planning is easier than strong planning, in practice.
● Terminating plans are easier to compute than non-terminating plans, in practice
● Worst-case complexity does not manifest, in practice (MONA’s LTL2DFA tool is very effective [Zhu et al., 2018]).

Figure 1. Strong LTLf FOND versus stochastic-fair LTLf FOND. Figure 2. Strong LTL FOND versus stochastic-fair LTL FOND.

1 https://bitbucket.org/acamacho/ltlfond2fond

https://bitbucket.org/acamacho/ltlfond2fond

Summary and Final Thoughts
Temporal Logics can be used to specify:

● Temporally extended goals in planning.
● FOND domains, although we prefer using compact PDDL descriptions.
● Fairness assumptions, although PDDL planning have them implicit.

Advantages of Temporal Logics on Finite Traces (vs. Infinite Traces):

● Terminating plans are easier to compute than non-terminating plans
(the comparison is not apples-to-apples).

● We shall specify goals using Temporal Logics on Finite Traces if programs terminate.

27

Bonus: Can we also use FOND
planners as a tool
for Reactive Synthesis?

28

Reactive Synthesis via Automata Games via FOND Planning

LTL
specification

Safety games
(UkCW automata)

Reachability games
(NkBW automata)

(Camacho et al., IJCAI 2018)

synthesisLTLf
specification

Reachability game
(NFW automata)

(Camacho et al., ICAPS 2018)realizability

bounded synthesis

bounded realizability

29

Non-terminating programs

Terminating programs

Bonus: What about
Environment Assumptions?

30

reductionLTL specification
+

LTL environment assumptions

Reactive Synthesis with Environment Assumptions

LTL
specification

Safety games
(UkCW automata)

this is
not right

Reachability games
(NkBW automata)

(Camacho et al., IJCAI 2018)

LTLf
specification

Reachability game
(NFW automata)

(Camacho et al., ICAPS 2018)realizability

LTLf specification
+

LTLf environment assumptions

synthesis

31

bounded synthesis

bounded realizability

reductionLTL specification
+

LTL environment assumptions

Reactive Synthesis with Environment Assumptions
Safety games

(UkCW automata)

Reachability games
(NkBW automata)

(Camacho et al., IJCAI 2018)

LTLf
specification

Reachability game
(NFW automata)

(Camacho et al., ICAPS 2018)

synthesis

realizability

LTLf specification
+

LTL environment assumptions
(Camacho et al., KR 2018)

LTL
specification

safe & co-safe env. assumptions

32

bounded synthesis

bounded realizability

Summary and Final Thoughts
Temporal Logics on Finite Traces can have a computational advantage.

Environment Assumptions are properties that need to be evaluated over infinite-length traces.

It is possible to decouple the (finite) LTLf part of specification from the (infinite) LTL assumptions.

● Sometimes, we can stay in the “finite” world (e.g., safe and co-safe env. assumptions).
● That reminds a lot of FOND planning!

33

