LTL and Beyond:

Formal Languages for Reward Function Specification in Reinforcement Learning

Alberto Camacho

Rodrigo Toro Icarte

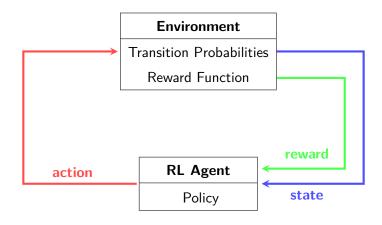
Toryn Q. Klassen

Richard Valenzano

Sheila A. McIlraith

Previously published in IJCAI 2019, pp. 6065-6073

Reinforcement learning (RL)

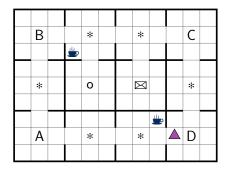


Takeaway points

• Reward machines (RMs) are a form of automaton that are a way of representing (temporally extended) reward functions.

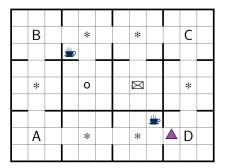
• Formulas in many temporal languages (e.g., LTL_f) can be **translated** into RMs.

 Once a reward function is represented as an RM, its structure can be exploited by various RM-specific algorithms for more efficient reinforcement learning.



Symbol	Meaning
	Agent
*	Decoration
1	Coffee machine
\bowtie	Mail room
0	Office
A,B,C,D	Marked locations

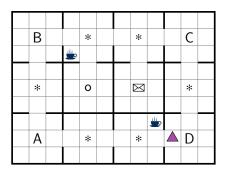
 $\textbf{Task} \colon \mathsf{Patrol}\ \mathsf{A},\ \mathsf{B},\ \mathsf{C},\ \mathsf{and}\ \mathsf{D}.$



Symbol	Meaning
	Agent
*	Decoration
<u></u>	Coffee machine
\bowtie	Mail room
0	Office
A,B,C,D	Marked locations

Task: Patrol A, B, C, and D.

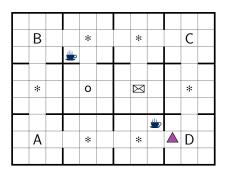
- For RL, the task has to be specified in terms of a reward function
 - which might be derived from a formula in Linear Temporal Logic (LTL) or some other formal language, or programmed directly.



```
m = 0 # global variable
def get_reward(s):
    if m == 0 and s.at("A"):
        m = 1
    if m == 1 and s.at("B"):
        m = 2
    if m == 2 and s.at("C"):
        m = 3
    if m == 3 and s.at("D"):
        m = 0
    return 1
return 0
```

Task: Patrol A, B, C, and D.

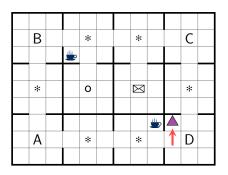
- For RL, the task has to be specified in terms of a reward function
 - which might be derived from a formula in Linear Temporal Logic (LTL) or some other formal language, or programmed directly.



```
m = 0 # global variable
def get_reward(s):
    if m == 0 and s.at("A"):
        m = 1
    if m == 1 and s.at("B"):
        Reward Function
        m = 3
    if m == 3 and s.at("B"):
        m = 0
        return 1
    return 0
```

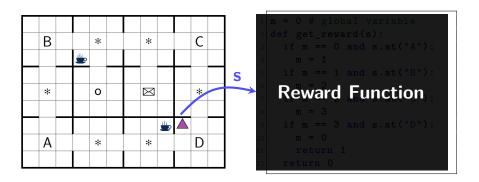
Task: Patrol A, B, C, and D.

- For RL, the task has to be specified in terms of a reward function
 - which might be derived from a formula in Linear Temporal Logic (LTL) or some other formal language, or programmed directly.
- The reward function is then often treated as a black box.

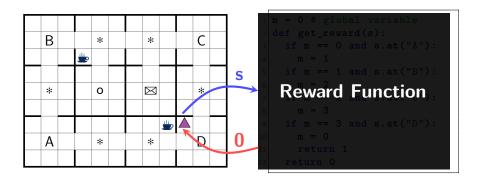


```
m = 0 # global variable
def get_reward(s):
    if m == 0 and s.at("A"):
        m = 1
    if m == 1 and s.at("B"):
    Reward Function
        m = 3
    if m == 3 and s.at("D"):
        m = 0
    return 1
    return 0
```

- For RL, the task has to be specified in terms of a reward function
 - which might be derived from a formula in Linear Temporal Logic (LTL) or some other formal language, or programmed directly.
- The reward function is then often treated as a black box.



- For RL, the task has to be specified in terms of a reward function
 - which might be derived from a formula in Linear Temporal Logic (LTL) or some other formal language, or programmed directly.
- The reward function is then often treated as a black box.



- For RL, the task has to be specified in terms of a reward function
 - which might be derived from a formula in Linear Temporal Logic (LTL) or some other formal language, or programmed directly.
- The reward function is then often treated as a black box.

We previously introduced reward machines in an ICML paper.¹

Suppose we have a vocabulary $\ensuremath{\mathcal{P}}$ to label environment states, e.g.,

$$\mathcal{P} = \{ \clubsuit, \bowtie, o, *, A, B, C, D \}.$$

- A finite set of states, with an initial state u_0
- A set of transitions labelled by:
 - a logical condition (using the vocabulary) and
 - a reward (or more generally a reward function).

 $[\]langle \neg A, 0 \rangle$ $\langle D, 1 \rangle$ $\langle D, 0 \rangle$ $\langle C, 0 \rangle$ $\langle C, 0 \rangle$ $\langle B, 0 \rangle$ $\langle C, 0 \rangle$ $\langle C, 0 \rangle$ $\langle C, 0 \rangle$ $\langle C, 0 \rangle$

¹Rodrigo Toro Icarte et al. "Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning". In: *ICML*. 2018, pp. 2112–2121.

We previously introduced reward machines in an ICML paper.¹

Suppose we have a vocabulary $\ensuremath{\mathcal{P}}$ to label environment states, e.g.,

$$\mathcal{P} = \{ \clubsuit, \bowtie, o, *, A, B, C, D \}.$$

- ullet A finite set of states, with an initial state u_0
- A set of transitions labelled by:
 - a logical condition (using the vocabulary) and
 - a reward (or more generally a reward function).

 $[\]langle \neg A, 0 \rangle$ $\langle D, 1 \rangle$ $\langle A, 0 \rangle$ $\langle A, 0$

¹Rodrigo Toro Icarte et al. "Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning". In: *ICML*. 2018, pp. 2112–2121.

We previously introduced reward machines in an ICML paper.¹

Suppose we have a vocabulary $\ensuremath{\mathcal{P}}$ to label environment states, e.g.,

$$\mathcal{P} = \{ \clubsuit, \bowtie, o, *, A, B, C, D \}.$$

- A finite set of states, with an initial state u_0
- A set of transitions labelled by:
 - a logical condition (using the vocabulary) and
 - a reward (or more generally a reward function).

 $[\]langle \mathbf{D}, \mathbf{1} \rangle \longrightarrow \langle \mathbf{A}, \mathbf{0} \rangle$ $\langle \mathbf{D}, \mathbf{1} \rangle \longrightarrow \langle \mathbf{A}, \mathbf{0} \rangle$ $\langle \mathbf{C}, \mathbf{0} \rangle \longrightarrow \langle \mathbf{B}, \mathbf{0} \rangle$ $\langle \mathbf{C}, \mathbf{0} \rangle \longrightarrow \langle \mathbf{B}, \mathbf{0} \rangle$ $\langle \mathbf{C}, \mathbf{0} \rangle \longrightarrow \langle \mathbf{C}, \mathbf{0} \rangle$

¹Rodrigo Toro Icarte et al. "Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning". In: *ICML*. 2018, pp. 2112–2121.

We previously introduced reward machines in an ICML paper.¹

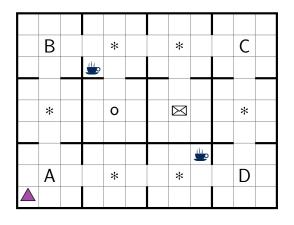
Suppose we have a vocabulary $\ensuremath{\mathcal{P}}$ to label environment states, e.g.,

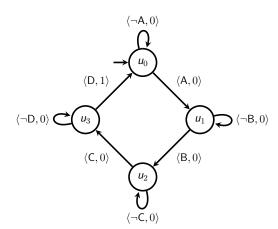
$$\mathcal{P} = \{ \clubsuit, \bowtie, o, *, A, B, C, D \}.$$

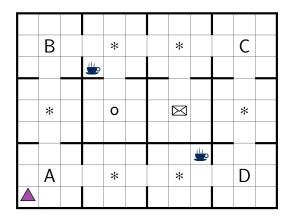
- A finite set of states, with an initial state u_0
- A set of transitions labelled by:
 - a logical condition (using the vocabulary) and
 - a reward (or more generally a reward function).

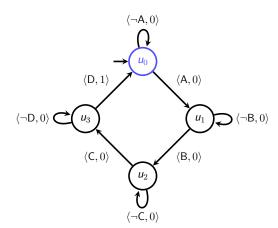
 $[\]langle \neg A, \mathbf{0} \rangle$ $\langle D, \mathbf{1} \rangle$ $\langle D, \mathbf{0} \rangle$ $\langle A, \mathbf{0} \rangle$

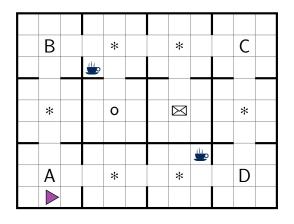
¹Rodrigo Toro Icarte et al. "Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning". In: *ICML*. 2018, pp. 2112–2121.

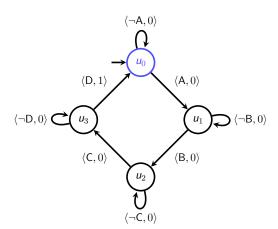


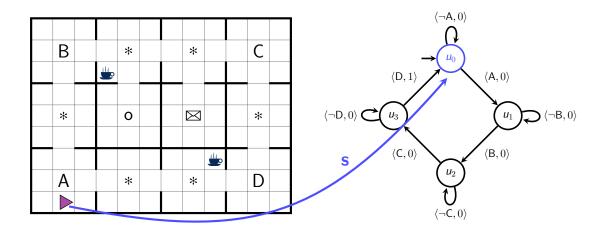


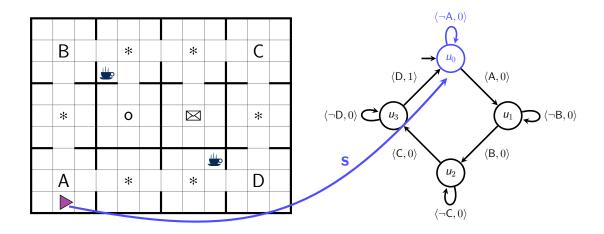


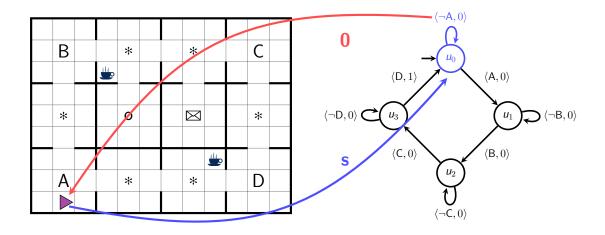


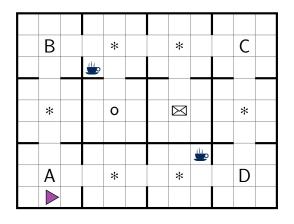


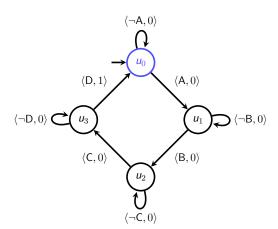


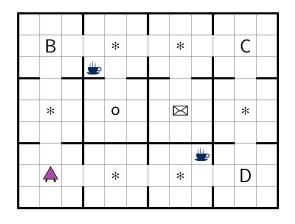


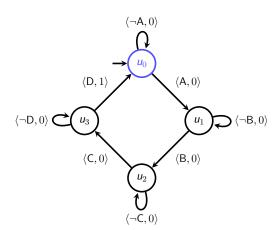


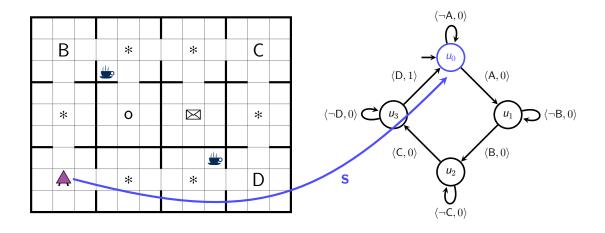


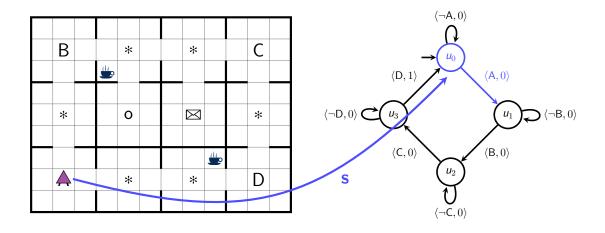


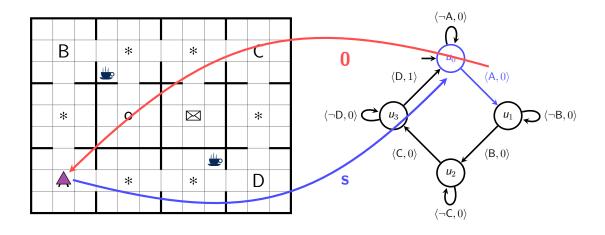


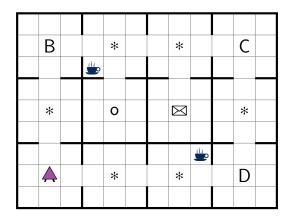


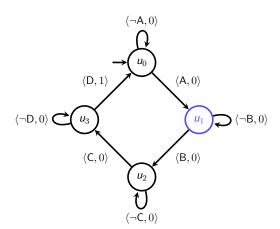


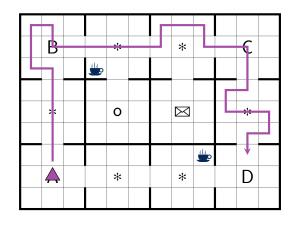


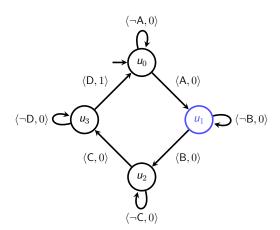


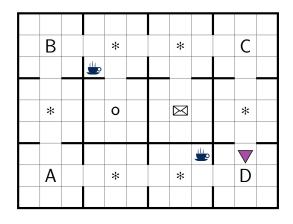


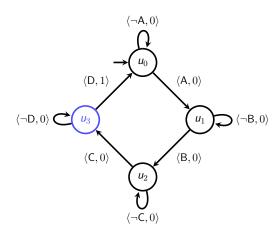


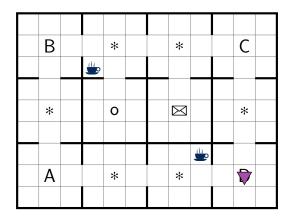


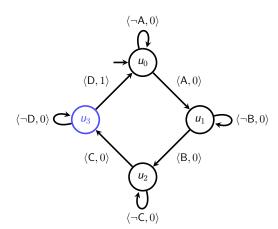


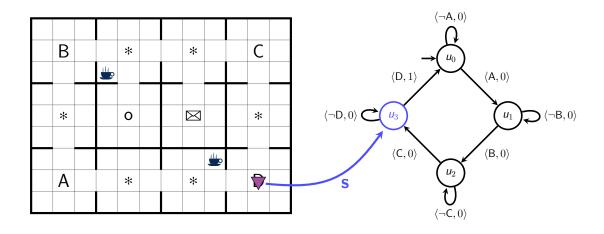


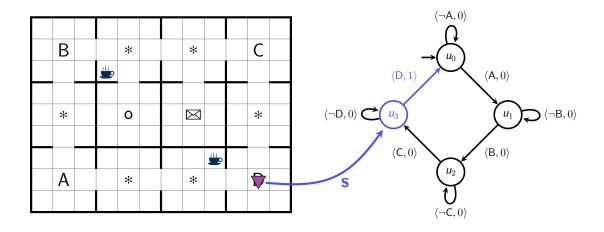


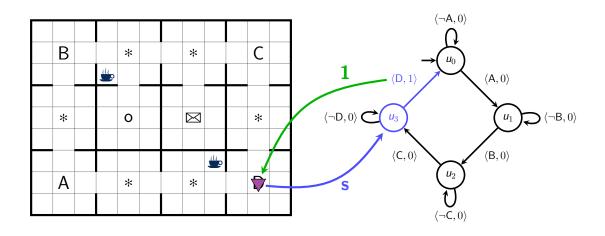


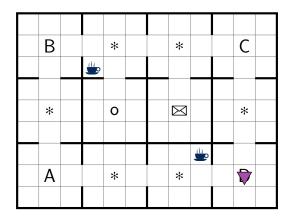


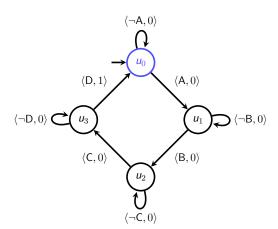




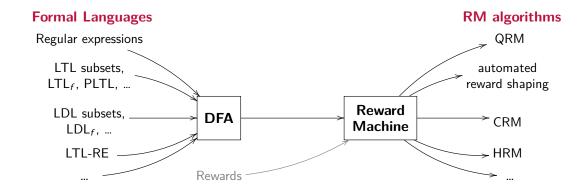






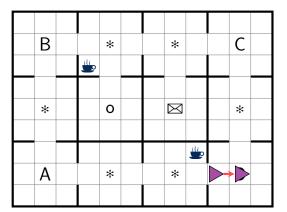


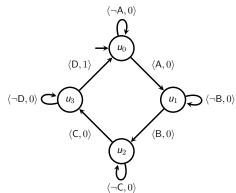
Transforming formal language specifications into reward machines



The QRM algorithm²

When the agent acts while in RM state u_i , we can compute what reward would have been received if had acted in any other RM state u_j .



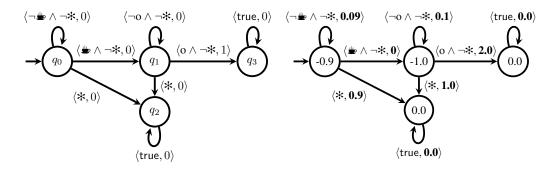


QRM generates such synthetic, **counterfactual** experiences for use in training.

²Rodrigo Toro Icarte et al. "Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning". In: *ICML*. 2018, pp. 2112–2121.

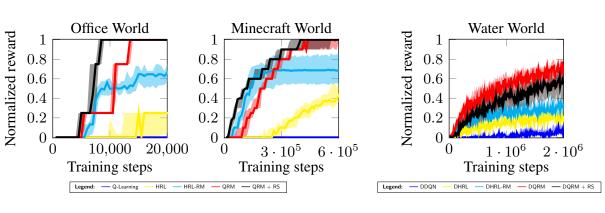
Automated reward shaping

- Treat the RM itself as a (deterministic) MDP, and use **value iteration** to determine the value of each state.
- Then, use these values to define potentials for potential-based³ reward shaping.



³Andrew Y. Ng et al. "Policy invariance under reward transformations: Theory and application to reward shaping". In: *ICML*. 1999, pp. 278–287.

Experimental results



By exploiting reward machine structure, our algorithms outperform the baselines.

Conclusion

- Reward machines (RMs) are a form of automaton that are a way of representing (temporally extended) reward functions.
- Formulas in many temporal languages (e.g., LTL_f) can be **translated** into RMs.
- Once a reward function is represented as an RM, its structure can be exploited by various RM-specific **algorithms** for more efficient reinforcement learning.

Code:

- Reward machine algorithms: https://bitbucket.org/RToroIcarte/qrm
- Translating formal languages into reward machines: http://fl-at.jaimemiddleton.cl/4

⁴ Jaime Middleton et al. *FL-AT: A Formal Language–Automaton Transmogrifier*. System demonstration at ICAPS 2020. 2020.