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Introduction

Objective

Extend Answer Set Programming (ASP) with means for
representing and reasoning about dynamic knowledge

Approach

Extend the base logic of ASP, namely the logic of Here-and-There
(HT), with language elements from

Temporal Logic (LTL)
Dynamic Logic (LDL)
Metric Logic (MTL)

over a common semantic structure, namely, finite linear HT traces

Origin Temporal logic of Here-and-There (Cabalar and Pérez, 2007)
over infinite traces
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The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T ) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996)

Minimal HT models correspond to answer sets

, more precisely,
an answer set T of φ is

a total HT model (T ,T ) of φ and
there is no H ⊂ T such that (H,T ) is an HT model of φ

Such models are are called equilibrium models
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The logic of Here-and-There

Origin (monotonic)

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T ) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996) (non-monotonic)

Minimal HT models correspond to answer sets, more precisely,
an answer set T of φ is

a total HT model (T ,T ) of φ and
there is no H ⊂ T such that (H,T ) is an HT model of φ

Such models are are called equilibrium models
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Dynamic and Temporal Logic of
Here-and-There

Structure An HT trace is a sequence (Hi ,Ti )
λ
i=0 of HT models

Satisfaction (Hi ,Ti )
λ
i=0 = (H,T)

Something Boolean (H,T), k |= ϕ→ ψ if

(H′,T), k 6|= ϕ or (H′,T), k |= ψ, for all H′ ∈ {H,T}
Something Temporal

(H,T), k |= �ϕ if (H,T), i |= ϕ for any i = k..λ

(H,T), k |= ♦ϕ if (H,T), i |= ϕ for some i = k..λ

Something Dynamic (H,T), k |= [ρ]ϕ if

(H′,T), i |= ϕ for all i = 0..λ with (k, i) ∈ ‖ ρ ‖(H′,T),
for all H′ ∈ {H,T}
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Pedestrian traffic light
Metric equilibrium logic

�(red ∧ green→ ⊥) (1)

�(¬green→ red) (2)

�
(
push→ ♦[1..15)(�≤30 green)

)
(3)

{(1), (2), (3)} |=MEL �(red ∧ ¬green ∧ ¬push)

{(1), (2), (3),◦5 push} has 14 metric equilibrium models of length 3

T0 = {red} τ(0) = 0
T1 = {push, red} τ(1) = 5
T2 = {green} τ(2) ∈ {6, . . . , 19}
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telingo

telingo

extends the full modeling language of clingo
with (past and future) temporal operators
relies on finite traces
implements an incremental translation

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), box(B,W),

#sum { C : capacity(R,C);

-V,O : ’holding(R,O,V) } < W.
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Summary

ASP + Temporal, Dynamic, and Metric Logics

via extending HT over the common semantic structure
of finite HT traces

Interested? JANCL’13, ICLP’18, KR’18, LPNMR’19, TPLP’23

Playful? https://github.com/potassco/telingo
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Summary

ASP + Temporal, Dynamic, and Metric Logics

via extending HT over the common semantic structure
of finite HT traces

Interested? JANCL’13, ICLP’18, KR’18, LPNMR’19, TPLP’23

Playful?1 https://github.com/potassco/telingo

1Classical logic is obtained in ASP by adding choices;
eg., ‘{a}.’ stands for ‘a ∨ ¬a’.
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