Towards Dynamic, Metric and Temporal Answer Set Programming over Linear Finite Traces

Pedro Cabalar Martín Diéguez Torsten Schaub

University of Corunna, Spain

Université d'Angers, France

University of Potsdam, Germany

Introduction

Objective

Extend Answer Set Programming (ASP) with means for representing and reasoning about dynamic knowledge

Introduction

Objective

Extend Answer Set Programming (ASP) with means for representing and reasoning about dynamic knowledge

Approach

Extend the base logic of ASP, namely the logic of Here-and-There (HT), with language elements from

- Temporal Logic (LTL)
- Dynamic Logic (LDL)
- Metric Logic (MTL)

over a common semantic structure, namely, finite linear HT traces

Introduction

Objective

Extend Answer Set Programming (ASP) with means for representing and reasoning about dynamic knowledge

Approach

Extend the base logic of ASP, namely the logic of Here-and-There (HT), with language elements from

- Temporal Logic (LTL)
- Dynamic Logic (LDL)
- Metric Logic (MTL)

over a common semantic structure, namely, finite linear HT traces

 Origin Temporal logic of Here-and-There (Cabalar and Pérez, 2007) over infinite traces

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective, and negation is defined in terms of implication: ¬φ = φ → ⊥

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective
- Discovery (Pearce, 1996)

Minimal HT models correspond to answer sets

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective
- Discovery (Pearce, 1996)

Minimal HT models correspond to answer sets, more precisely, an answer set ${\cal T}$ of ϕ is

- a total HT model (T, T) of ϕ and
- there is no $H \subset T$ such that (H, T) is an HT model of ϕ

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective
- Discovery (Pearce, 1996)

Minimal HT models correspond to answer sets, more precisely, an answer set ${\cal T}$ of ϕ is

• a total HT model (T, T) of ϕ and

• there is no $H \subset T$ such that (H, T) is an HT model of ϕ

Such models are are called equilibrium models

Origin (monotonic)

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective

■ Discovery (Pearce, 1996) (non-monotonic) Minimal HT models correspond to answer sets, more precisely, an answer set T of φ is

- a total HT model (T, T) of ϕ and
- there is no $H \subset T$ such that (H, T) is an HT model of ϕ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP)

Dynamic, Metric and Temporal ASP

 Dynamic and Temporal Logic of Here-and-There
 ■ Structure An HT trace is a sequence (H_i, T_i)^λ_{i=0} of HT models

Dynamic and Temporal Logic of Here-and-There ■ Structure An HT trace is a sequence (H_i, T_i)^λ_{i=0} of HT models ■ Satisfaction (H_i, T_i)^λ_{i=0} = (H, T)

• Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models

- Satisfaction (H_i, T_i) $_{i=0}^{\lambda} = (\mathbf{H}, \mathbf{T})$ ■ Something Boolean (\mathbf{H}, \mathbf{T}), $k \models \varphi \rightarrow \psi$ if
 - $(\mathsf{H}',\mathsf{T}), k \not\models \varphi \text{ or } (\mathsf{H}',\mathsf{T}), k \models \psi, \text{ for all } \mathsf{H}' \in \{\mathsf{H},\mathsf{T}\}$

• Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models

- Satisfaction (H_i, T_i) $_{i=0}^{\lambda} = (\mathbf{H}, \mathbf{T})$ ■ Something Boolean (\mathbf{H}, \mathbf{T}), $k \models \varphi \rightarrow \psi$ if
 - $(\mathbf{H}',\mathbf{T}), k \not\models \varphi \text{ or } (\mathbf{H}',\mathbf{T}), k \models \psi, \text{ for all } \mathbf{H}' \in {\mathbf{H},\mathbf{T}}$
 - Something Temporal

 $(\mathbf{H}, \mathbf{T}), k \models \Box \varphi \text{ if } (\mathbf{H}, \mathbf{T}), i \models \varphi \text{ for any } i = k..\lambda$ $(\mathbf{H}, \mathbf{T}), k \models \Diamond \varphi \text{ if } (\mathbf{H}, \mathbf{T}), i \models \varphi \text{ for some } i = k..\lambda$

• Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models

- Satisfaction $(H_i, T_i)_{i=0}^{\lambda} = (\mathbf{H}, \mathbf{T})$
 - Something Boolean $(\mathbf{H}, \mathbf{T}), k \models \varphi \rightarrow \psi$ if $(\mathbf{H}', \mathbf{T}), k \not\models \varphi$ or $(\mathbf{H}', \mathbf{T}), k \models \psi$, for all $\mathbf{H}' \in \{\mathbf{H}, \mathbf{T}\}$
 - $(\Pi, \Pi), \kappa \not\models \varphi$ or $(\Pi, \Pi), \kappa \models \psi$, for all $\Pi \in \{\Pi, \Pi\}$
 - Something Temporal

 $(\mathbf{H}, \mathbf{T}), k \models \Box \varphi \text{ if } (\mathbf{H}, \mathbf{T}), i \models \varphi \text{ for any } i = k..\lambda$

 $(\mathbf{H}, \mathbf{T}), k \models \Diamond \varphi \text{ if } (\mathbf{H}, \mathbf{T}), i \models \varphi \text{ for some } i = k..\lambda$

• Something Dynamic $(\mathbf{H}, \mathbf{T}), k \models [\rho]\varphi$ if

 $(\mathbf{H}', \mathbf{T}), i \models \varphi$ for all $i = 0..\lambda$ with $(k, i) \in \|\rho\|^{(\mathbf{H}', \mathbf{T})}$, for all $\mathbf{H}' \in \{\mathbf{H}, \mathbf{T}\}$

Pedestrian traffic light

Metric equilibrium logic

 \Box (red \land green $\rightarrow \bot$) \Box (\neg green \rightarrow red) \Box (push \rightarrow $\Diamond_{[1..15)}(\Box_{\leq 30}$ green))

(1)

(2)

(3)

Pedestrian traffic light

Metric equilibrium logic

 $\Box(\mathit{red} \land \mathit{green} \rightarrow \bot)$ $\Box(\neg \mathit{green} \rightarrow \mathit{red})$ $\Box(\mathit{push} \rightarrow \Diamond_{[1..15)}(\Box_{\leq 30} \mathit{green}))$

• $\{(1), (2), (3)\} \models_{MEL} \Box (red \land \neg green \land \neg push)$

Torsten Schaub (KRR@UP)

(1)

(2)

(3)

Pedestrian traffic light

Metric equilibrium logic

$$\Box(\operatorname{red} \land \operatorname{green} \to \bot) \tag{1}$$
$$\Box(\neg \operatorname{green} \to \operatorname{red}) \tag{2}$$
$$\Box(\operatorname{push} \to \Diamond_{[1..15)}(\Box_{\leq 30} \operatorname{green})) \tag{3}$$

 $\blacksquare \ \{(1),(2),(3)\} \models_{MEL} \Box (red \land \neg green \land \neg push)$

■ {(1), (2), (3), $\circ_5 \text{ push}$ } has 14 metric equilibrium models of length 3 ■ $T_0 = \{\text{red}\}$ $\tau(0) = 0$ ■ $T_1 = \{\text{push, red}\}$ $\tau(1) = 5$ ■ $T_2 = \{\text{green}\}$ $\tau(2) \in \{6, ..., 19\}$

Torsten Schaub (KRR@UP)

Dynamic, Metric and Temporal ASP

telingo

 extends the full modeling language of clingo with (past and future) temporal operators

- relies on finite traces
- implements an incremental translation

telingo — https://github.com/potassco/telingo

- extends the full modeling language of clingo with (past and future) temporal operators
- relies on finite traces
- implements an incremental translation

telingo — https://github.com/potassco/telingo

- extends the full modeling language of clingo with (past and future) temporal operators
- relies on finite traces
- implements an incremental translation

Primes allow for expressing (iterated) next and previous operators

• •p(a) and $\circ q(b)$ can be expressed by 'p(a) and q'(b)

telingo — https://github.com/potassco/telingo

- extends the full modeling language of clingo with (past and future) temporal operators
- relies on finite traces
- implements an incremental translation
- Primes allow for expressing (iterated) next and previous operators
 ●p(a) and oq(b) can be expressed by 'p(a) and q'(b)
- Example "A robot cannot lift a box unless its capacity exceeds the box's weight plus that of all held objects"

Summary

■ ASP + Temporal, Dynamic, and Metric Logics

via extending HT over the common semantic structure of finite HT traces

■ ASP + Temporal, Dynamic, and Metric Logics

via extending HT over the common semantic structure of finite HT traces

■ Interested? JANCL'13, ICLP'18, KR'18, LPNMR'19, TPLP'23

Summary

■ ASP + Temporal, Dynamic, and Metric Logics

via extending HT over the common semantic structure of finite HT traces

- Interested? JANCL'13, ICLP'18, KR'18, LPNMR'19, TPLP'23
- Playful? https://github.com/potassco/telingo

Summary

■ ASP + Temporal, Dynamic, and Metric Logics

via extending HT over the common semantic structure of finite HT traces

- Interested? JANCL'13, ICLP'18, KR'18, LPNMR'19, TPLP'23
- Playful?¹ https://github.com/potassco/telingo

¹Classical logic is obtained in ASP by adding choices; eg., '{a}.' stands for ' $a \lor \neg a'$. Torsten Schaub (KRR@UP) Dynamic, Metric and Temporal ASP

