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Generative models are 
neither foes nor friends. 

They are emerging tools 
that deserve attention. 

I think…
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“ ”ℳ ⊗ # ⊧ Φ
model, environment assumptions,  controller, system requirements, …

• Model checking, planning,… 
• Reactive synthesis, games on graphs, … 
• Probabilistic verification and synthesis 
• Reinforcement learning
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Where do the automata come from?

Capturing task knowledge in automata is 
not straightforward

Automata learning is an alternative but… 
• May require too many queries to a human 
• Building automated oracles is not easy

Figure from Bollig, et al., IJCAI, 2009Complete prior information, e.g., the set of 
possible actions and environment responses, 
may not be available 

Humans are heavily involved in the often-
overlooked “preprocessing”
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Hypotheses

Generative language models can help distill task knowledge into 
automaton-based representations.
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Hypotheses

Generative language models can help distill task knowledge into 
automaton-based representations.

https://jalammar.github.io/how-gpt3-works-visualizations-animations/
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Hypotheses

Generative language models can help distill task knowledge into 
automaton-based representations.

OpenAI
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Why to connect generative models to automata?

The outputs of generative language models are not compatible 
downstream sequential decision-making processes

Distilling task-related knowledge in automata will help integrate 
into verification, synthesis, or reinforcement learning 

• Interrogate the outputs of generative models 
• Refine the distilled knowledge 
• Integrate additional knowledge available from independent 

sources

Speculation: Maybe help improve generative models themselves
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How to connect generative models to automata? 
(GLM2FAS: Generative Language Model to Finite-State Automaton)
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Semantic parsing and 
automaton construction 

<look left>

<proceed> <[2]>

<if> <no car come>, <cross road>

<if> <no car come> <proceed [2]>. 
<if> <car come> <proceed [3]>

<wait> <(car) pass> <cross road>
<cross road> <after> <car pass>
<stay> <until> <car pass>
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Semantic parsing and 
automaton construction 
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“Cross the road” 

The set of atomic propositions: 
    {car come, car pass, . . .

. . . turn green, traffic light}

The set of output symbols: 
    {"look way", "cross road", . . .

. . . "locate traffic light", ϵ}
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More about “Cross the road” 

The set of output symbols: {"look way", "face direction", "cross road", "look right", "look left", ϵ}

refine
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A less obvious 
example:  
Secure multi-party 
computation 

Method “for parties to 
jointly compute a function 
over their inputs while 
keeping those inputs 
private.” (Wikipedia)
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Go back to verification 

ℳ ⊗ # ⊧ Φ

Constructed using 
GLM2FSA

Additional information, 
e.g., a model, available Specification

Φ = ¬ traffic light  → ◊ goal 

ℳ

#
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A case that does not pass the verification 

ℳ ⊗ # ⊧ Φ

Part of the “top-layer” from 
GLM2FSA

# :

Specification

Φ = ¬ traffic light  → ◊ goal 
ℳ

The model checker finds a counter-example: qinit, qinit, qinit, . . .
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Refinement of the controller 

Query for additional sub-steps

Prune “unintuitive 
transitions” while 
keeping it verified



Ufuk Topcu 19

A few next steps 

Clean things up. Understand what we are actually doing. 

Expand the class of finite-state objects that can be 
distilled. Integrate into automata learning. 

Probabilistic versions

Joint planning and perception through generative models 
for joint language and image 

Utilize for task-guided reinforcement learning



Ufuk Topcu 20

Generative models jointly for language and image.  
Why? 

x0,y0

x0,y1 x1,y0

x1,y1 x1,y2

x0 x0 x1
x0

x0
x1

x1

x1

x1

x0,y2

A reactive control logic determining the 
system choices  in reaction to the 
changes in the environment variables 

y
x

: “at the cross walk”x1

: “the traffic light is green”x0

: “a car is 
approaching”
x2
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A tentative workflow 
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A glimpse of (potential) results on “cross the road” 
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A few next steps 

Clean things up. Understand what we are actually doing. 

Expand the class of finite-state objects that can be 
distilled. Integrate into automata learning. 

Probabilistic versions

“Grounding” through generative models for joint language 
and image. 

Utilize for task-guided reinforcement learning
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How to represent contextual information? 
(using reward machines)

A car to drive from A to B while 
obeying the “traffic rules”:

• Traveling on an ordinary road, stop 

at intersection for one time step.

• Traveling on a priority road, do not 

stop at intersection.

priority 
roads

ordinary 
roads

a reward machine
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Reinforcement learning with reward machines

π* = arg max
π

q(s, a)
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Reinforcement learning with reward machines

— state and action over the environment(s, a)

q0(s, a) q1(s, a) q2(s, a)

q3(s, a)q4(s, a)
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Joint task inference and reinforcement learning 
How it works…

initial (trivial) 
hypothesis

iteration 1
iteration n

…
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Joint task inference and reinforcement learning 
Empirically…

q-learning with augmented state space hierarchical reinforcement learning deep reinforcement learning with double q-learning

Two-orders-of-magnitude improvement in data 
efficiency.


Reliable convergence (with no “additional” 
parameter tuning).


Consistent results across a range of 
benchmarks.
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“Advice-guided” reinforcement learning 
Can we warm-start? Can we recover from bad advice?

The more “informative” the initial 
advice, the lower the amount of 

data necessary.

hierarchical 
reinforcement 

learning

deep reinforcement 
learning with 

double q-learning
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A (hopefully) useful interpretation: 
Generative models for language 
and image are emerging tools that 
deserve attention. 

Summary

They may complement the existing 
design flows in… 
• Model checking, planning,… 
• Reactive synthesis, games on 

graphs, … 
• Probabilistic verification and 

synthesis 
• Reinforcement learning 
But, care is definitely necessary. 

We may decide not to use them but 
that decision needs to informed 
rather than hype-based.


