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| think...

Generative models are
neither foes nor friends.

They are emerging tools
that deserve attention.
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Abstract

Automaton-based representations of task knowledge play
an important role in control and planning for sequential
decision-making problems. However, obtaining the high-
level task knowledge required to build such automata is often
difficult. Meanwhile, large-scale generative language models
(GLMs) can automatically generate relevant task knowledge.
However, the textual outputs from GLMs cannot be formally
verified or used for sequential decision-making. We propose
a novel algorithm named GLM2F SA, which constructs a fi-
nite state automaton (FSA) encoding high-level task knowl-
edge from a brief natural-language description of the task
goal. GLM2F SA first sends queries to a GLM to extract task
knowledge in textual form, and then it builds an FSA to repre-
sent this text-based knowledge. The proposed algorithm thus
fills the gap between natural-language task descriptions and
automaton-based representations, and the constructed FSAs
can be formally verified against user-defined specifications.
We accordingly propose a method to iteratively refine the
queries to the GLM based on the outcomes, e.g., counter-
examples, from verification. We demonstrate GLM2FSA’s
ability to build and refine automaton-based representations of
everyday tasks (e.g., crossing a road or making a phone call),
and also of tasks that require highly-specialized knowledge
(e.g., executing secure multi-party computation).

1 Introduction

Input : “Cross the road"

‘ Query GLM for steps and substeps

eps for
1] Look both way for Crossie he
)

[2] <if> <no car come> <proceed cross road>
[3] <if> <car come> <wait> <pass> <before> <cross road> response

[1.1) <face direction want cross road> GPT-3
[1.2] <look left>

[1.3] <look right>

[1.4] <if> <no car come> <proceed> <if> <car come> <proceed>

A
Parse sentences, extract ke rds
‘ yWwo query
[1] <look way> <before> <cross road> ‘

‘ Build finite state automata from substeps

P = {car come, pass, ...} - > A
A = {face direction, look left, look right, ...} Visuaize O o) A

) m")")
Q={9,, 9,2 G120 Gppr -} ' l ‘

Figure 1: Demonstration of GLM2F SA in a real example (the
output FSA is presented in Figure 5).

be constructed in the first place. Even in cases in which an
oracle exists, either the learning algorithm or the oracle re-
quires prior information, such as the set of possible actions
available to the acent and the cet of environmental resnonces
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model, environment assumptions, controller, system requirements, ...

* Model checking, planning,...

» Reactive synthesis, games on graphs, ...
* Probabilistic verification and synthesis

* Reinforcement learning
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Where do the automata come from?

Capturing task knowledge in automata is
not straightforward

Teacher ]

yes/no answer

membership query:
w € L

Automata learning is an alternative but... }
* May require too many queries to a human [ i
 Building automated oracles is not easy

if closed and consistent:
equivalence query
L(H)=L

Oracle j

Figure from Bollig, et al., IJCAI, 2009

yes or

counterexample

Complete prior information, e.g., the set of
possible actions and environment responses,
may not be available

Humans are heavily involved in the often-
overlooked “preprocessing”
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Hypotheses

Generative language models can help distill task knowledge into
automaton-based representations.
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Hypotheses

Generative language models can help distill task knowledge into
automaton-based representations.

1 2 3 4 5 6 2048

Input Recite the first law of robotics

Output:

https://jalammar.github.io/how-gpt3-works-visualizations-animations/
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Hypotheses

Generative language models can help distill task knowledge into
automaton-based representations.

GP1-5

robotics i o) 3

N\ /)
1- Convert word 3- Convert vector
into vector into word

https://jalammar.github.io/how-gpt3-works-visualizations-animations/
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Hypotheses

Generative language models can help distill task knowledge into
automaton-based representations.

Ufuk Topcu

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

~
G

Expiain reinforcement

learning to a 6 year old,

;

o)

4

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

r ~

w7/
Explain reinforcement
learning to a 6 year old.

Step3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

g

Write a story
about otters.




Why to connect generative models to automata?

The outputs of generative language models are not compatible
downstream sequential decision-making processes

Distilling task-related knowledge in automata will help integrate
Into verification, synthesis, or reinforcement learning

* Interrogate the outputs of generative models

* Refine the distilled knowledge

* Integrate additional knowledge available from independent
sources

Speculation: Maybe help improve generative models themselves

Ufuk Topcu 10



How to connect generative models to automata?
(GLM2FAS: Generative Language Model to Finite-State Automaton)

Input : “Cross the road”

¢ Query GLM for steps and substeps

1| Steps for: Cross the road

2| [1] Look both ways before crossing the road.

sf [2] If there are no cars coming, proceed to cross the road.

(| [3] If there are cars coming, wait for them to pass before crossing the road.

6/ Substeps for: [1] Look both ways before crossing the road.
71 [1.1] Face the direction you want to cross the road in.

8/ [1.2] Look to the left.

9| [1.3] Look to the right.

o[ [1.4] If there are no cars coming, proceed to [2]. If there are cars coming, proceed to [3].
1y .

# Parse sentences, extract keywords

query
[1] <look way> <before> <cross road>

[2] <if> <no car come> <proceed cross road>

[3] <if> <car come> <wait> <pass> <before> <cross road> response

[1.1] <face direction want cross road> GPT-3

[1.2] <look left>
[1.3] <look right>
[1.4] <if> <no car come> <proceed> <if> <car come> <proceed> Ve

(True,
face direction”, “look left™) “look right™)
S

¢ Build finite state automata from substeps

Q = {qll’ q12’ q13! q14; } ------------------------------ >
P = {car come, pass, ...} e
A = {face direction, look left, look right, ...} Visualize

Ufuk Topcu N



Semantic parsing and
automaton construction

+ Parse sentences, extract keywords

[1] <look way> <before> <cross road>

[2] <if> <no car come> <proceed cross road>

[3] <if> <car come> <wait> <pass> <before> <cross road>
[1.1] <face direction want cross road>

[1.2] <look left>
[1.3] <look right>

[1.4] <if> <no car come> <proceed> <if> <car come> <proceed>

¢ Build finite state automata from substeps

Q=19,1, 9., 9,5 qypr -}

P ={car come, pass, ...}
A = {face direction, look left, look right, ...}

Visualize

Category

Grammar

Default-Transition

VPA

Direct-Transition

VPA«— VP4 [j]

Conditional-Transition

(if)

Conditional-Transition
(if else)

if VPC, VP4
VP4 if VP¢

if VPC, VPA,. if - VPC, VP4,
if VPC VP4, else VP4,
VP4, if VPO, else VP4,

Self-Transition

VP4A+«— wait VPC¢ VPA
VPA«— VPA after VPC

VPA«— VP4 until VP¢

Ufuk Topcu

<look left>
<proceed> <[2]>

<if> <no car come>, <cross road>

<if> <no car come> <proceed [2]>.
<if> <car come> <proceed [3]>

<wait> <(car) pass> <cross road>

<cross road> <after> <car pass>
<stay> <until> <car pass>



Semantic parsing and
automaton construction

* Parse sentences, extract keywords

[1] <look way> <before> <cross road>

[2] <if> <no car come> <proceed cross road>

[3] <if> <car come> <wait> <pass> <before> <cross road>

[1.1] <face direction want cross road>

[1.2] <look left>

[1.3] <look right>

[1.4] <if> <no car come> <proceed> <if> <car come> <proceed>

¢ Build finite state automata from substeps

Q = {qu' 912 915 Ao }
P ={car come, pass, ...}
A = {face direction, look left, look right, ...}

Visualize

Category Grammar Transition Rule
3 ., . A .
Default-Transition VP @ Ty >

Direct-Transition

VPA+— VP4 [j]

O ©®

Conditional-Transition

(if)

Conditional-Transition
(if else)

if VPC, VP4
VP4 if VP¢

( ) (VPC,VP4)

if VPC, VP4,. if - VPC, VP4,

if VP~ VP 1 else VP D ( (=VPC, VPA,) \({z/ (VPC,VP4,) )
VP4, if VPC, else VP4,

Self-Transition

VP4A+«— wait VPC¢ VPA
VPA«— VPA after VPC

VPA«— VP4 until VP¢

Vo (VP VP4) ’
~VPC, VPA Q@ >
( ) (VPC ) ‘

Ufuk Topcu



Ufuk Topcu

“Cross the road”

(True, “look way”)

€)

( —turn green, €)

(car come N\— car pass,

Steps for: Cross the road

[1] Look both ways before crossing the road.

[2] If there are no cars coming, proceed to
cross the road.

[3] If there are cars coming, wait for them to
pass before crossing the road.

% The set of atomic propositions:

{car come, car pass, ...
...turn green,traffic light}

The set of output symbols:

{"look way", "cross road", . ..
... "locate traffic light", € }

AN B W=

Steps for: Cross the road at the traffic light
[1] Locate the traffic light.

[2] Wait for the traffic light to turn green.
[3] Look both ways before crossing the road.
[4] Cross the road if no cars are coming.




More about “Cross the road”

(True, (True, (True,
\ face direction” “look left”) “look right”)
start =>( d11 >\ q12 >\ 413 >
~ e i W ;
: T~
refine €
<€ 22 )€ - g21 (car come, €)
(True, O (True,
s “look way”) “cross road”)
) (True, €)
e » v
<€ 431 (— pass, €)
@ (pass, €) P
7
8| Substeps for: [2] If there are no cars coming,
proceed to cross the road.
9/ [2.1] Walk across the road.
2| Substeps for: [1] Look both ways before 10| [2.2] Once you have reached the other side,
crossing the road. look both ways again to make sure no cars
3] [1.1] Face the direction you want to cross the are coming.
road in. 11| [2.3] If there are no cars coming, proceed to
4/ [1.2] Look to the left. [4]. If there are cars coming, back to
5/ [1.3] Look to the right. [1].
6| [1.4] If there are no cars coming, go to [2]. 12
If there are cars coming, go to [3]. 13| Substeps for: [3] If there are cars coming,
7 wait for them to pass before crossing the
road.
14| [3.1] Wait for the cars to pass.
15| [3.2] Once the cars have passed, back to [2].

The set of output symbols: {"look way", "face direction", "cross road", "look right", "look left", € }

Ufuk Topcu 14



A less obvious
example:

Secure multi-party
computation

eps for: secure multi-party computation
] Define problem and inputs.

] Secret sharing of inputs.

] Compute secret shares.

] Reconstruct the final result.

] Output verification.

] Decrypt the final result.

OO B W -

[
(=)

2.1] Generate random secret shares.
2.2] Securely store secret shares.

—
= \O
—r— N

—
W N

bsteps for: [3] Compute secret shares.
1] Encrypt secret share.

2] Distribute encrypted shares.

.3] Compute ciphertext.

4] Broadcast result.

[
W

p— —
() )
'_"_"_"_‘U)

[
~

ubsteps for: [2] Secret sharing of inputs.

Ufuk Topcu

(True,
“output verification”)
<€ gs o)
- W 6&6 o
A s, K8
Q% Vs 1 g
7’
o - g
7 o 3
& g 3
I SR
.-
o
=
(L]
X
=
(True, =

ﬁmt%%‘l'}———————)
(True,

“define problem”) :

v
@ (e,

(True, €)
(“amqs 9103S,,

“‘secret share”) @

Method “for parties to
jointly compute a function
over their inputs while
keeping those inputs
private.” (Wikipedia)

&

—————

(“omqs AINqLsIp,,
‘on.y)

“generate share”)

encryptshare”)



Go back to verification

M KRXJEE DV

start =>»| Qinit

cross road A—
car come )
© ® = - traffic light — ¢ goal

— cross road

M
Additional information, Constructed using
e.g., a model, available GLM2FSA Specification

Ufuk Topcu 16



A case that does not pass the verification

M QK G F O

— look left A— look right 04 . S pecification

— look right~C&%;

stan-> e (1) ® = - traffic light — Q goal

>
% = look left s>
ngb »
(car come N\~ car pass, €)

(True, “look way™)
start = 41 > 42 > @
(— car come V car pass,

“cross road”)

\

€ : Part of the “top-layer” from
GLM2FSA

x The model checker finds a counter-example: q;,.:.. G;...» @i iz - - -

Ufuk Topcu |7



Refinement of the controller

J Query for additional sub-steps

(True, (True, (True,

.‘face direction”' “look left™) . “look right”)
start =>»
A

(car come, €)

\/\
@29 (True, . (True, .

“look way”) “cross road”)

T ,
v(—‘ car come, €) (True, €)

(car come, €)

- ] Prune “unintuitive
transitions” while

Y
upass, 9 keeping it verified

Ufuk Topcu

4

(car come N\ car pass, €) J
start =>» @ q2 > @
(— car come V car pass,

“ »”
(True, cross road”)

(True,
“face direction”) “look right™)

(True, “look left”)
qn >
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A few next steps

Clean things up. Understand what we are actually doing.

Expand the class of finite-state objects that can be
distilled. Integrate into automata learning.

Probabilistic versions

Joint planning and perception through generative models
for joint language and image

Utilize for task-guided reinforcement learning



Generative models jointly for language and image.
Why?

Xo: “the traffic light is green”

Ao
-

X,: “acaris
approaching’

J

A reactive control logic determining the
system choices y in reaction to the
changes in the environment variables x

Ufuk Topcu 20



A tentative workflow

Input Prompt
Cross the road at crosswalk/traffic light

v

GLM2FSA [

Generative
Language Model

\ 4

Precondition-Effect Extraction

(“ at I’(v.
“approach PC")

Ufuk Topcu

traffic light

Input Image

Vision-Language Model
(CLIP)

v

21

P[at traffic light] = 0.705




A glimpse of (potential) results on “cross the road”

P[at traffic light] = P[at pedestrian crossing] P[traffic light is green] = P[traffic light is green] = P[at pedestrian crossing] =

0.705 =0.152 0.366 0.577 0.998
(at PC, ¢€) (— green, €) (— green V- at PC, ¢)

>»| 422
(—at PC, (green, €)

“approach PC”)

Ufuk Topcu 22
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A few next steps

Clean things up. Understand what we are actually doing.

Expand the class of finite-state objects that can be
distilled. Integrate into automata learning.

Probabilistic versions

“Grounding” through generative models for joint language
and image.

Utilize for task-guided reinforcement learning &——

23



How to represent contextual information?
(using reward machines)

ordinary A car to drive from A to B while
roads obeying the “traffic rules”:

 Traveling on an ordinary road, stop

: ! at intersection for one time step.
| |
_I : u - \_  Traveling on a priority road, do not

K i e e N — = = = = - stop at intersection.

priority
roads

(sp,

(—uspApTy

a reward machine

Ufuk Topcu 24



Reinforcement learning with reward machines

n* = argmax q(s,a)

Actions

Agent

Ufuk Topcu 25



Reinforcement learning with reward machines

it it
...... =
H |
Environment

Sensor

Actions

Agent

(s, a)— state and action over the environment

Ufuk Topcu 25



Joint task inference and reinforcement learning
How it works...

iteration n
initial (trivial) iteration 1
hypothesis
| 1] [ 1]
it it
f Hmmi
Environment
Sensor

Actions

Agent

Ufuk Topcu 26



1.0;

0.8

0.6

0.41

0.2

0.0

g-learning with augmented state space

Joint task inference and reinforcement learning

Empirically...

Two-orders-of-magnitude improvement in data ( 1.0-)
efficiency. |
y 0.8 — JIRP
. . y . " T 0.6
Reliable convergence (with no “additional S
parameter tuning). 0 0.4
0.2
Consistent results across a range of -
benchmarks. 0 500000 1000000 1500000 2000000
number of training steps
\ “ 1.0 1.0
I
0.8 — HRL 0.81 —— DDQN
T0.61 T0.61
= =
00.4 00.4
¢| 0.2 0.21
l Ll | Co.0p Co.0)
0 500000 1000000 1500000 2000000 0 500000 1000000 1500000 2000000 0 500000 1000000 1500000 2000000

number of training steps

Ufuk Topcu

number of training steps

hierarchical reinforcement learning

27

number of training steps

deep reinforcement learning with double g-learning



“Advice-guided” reinforcement learning
Can we warm-start? Can we recover from bad advice?

1.0
U U
o —— {b}
§ 0.6/ —— {d}
— {9}
8(14‘ —— {b, d, g}
—— {bd}
02 {bdb}
—— {bdbg}
0.0
0 200000 400000
number of training steps
1.0
0.8 —— HRL
hierarchical g 0.6
relnforcgment =04
learning =
0.2
0.0
0 200000 400000 600000

number of training steps

Ufuk Topcu
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600000

1.0

0.81
S o.6/
D 0.4

0.2

0.0

The more “informative” the initial
advice, the lower the amount of
data necessary.

—— DDQN
deep reinforcement

learning with
double g-learning

200000 400000 600000
number of training steps



Summary

A (hopefully) useful interpretation:
Generative models for language
and image are emerging tools that
deserve attention.

They may complement the existing

design flows in...

* Model checking, planning,...

» Reactive synthesis, games on
graphs,

 Probabilistic verification and
synthesis

« Reinforcement learning

But, care is definitely necessary.

We may decide not to use them but
that decision needs to informed
rather than hype-based.

Ufuk Topcu

Input : “Cross the road”

# Query GLM for steps and substeps

Steps for: Cross the road
[1] Look both ways before crossing the road.
[2] If there are no cars coming, proceed to cross the road.

[3] If there are cars coming, wait for them to pass before crossing

¢ Parse sentences, extract keywords

ubsteps for: [1] Look both ys bef th d

1.1] Face tl 1 t you nt t th 1

1.2] Look to the left

1.3] Look to th ght

1.4] If there are no cars coming, proceed to [2]. If there are

[1] <look way> <before> <cross road>

[2] <if> <no car come> <proceed cross road>

[3] <if> <car come> <wait> <pass> <before> <cross road>

[1.1] <face direction want cross road>

[1.2] <look left>

[1.3] <look right>

[1.4] <if> <no car come> <proceed> <if> <car come> <proceed>

¢ Build finite state automata from substeps

Q=1{9, 912 U1z Gypr -}
P = {car come, pass, ...}
A = {face direction, look left, look right, ...}

Visualize

29

query

response

ed to [3].

@

GPT-3




