Learning Reward Machines for Partially Observable Reinforcement Learning

Rodrigo Toro Icarte Ethan Waldie Toryn Q. Klassen Richard Valenzano Margarita P. Castro Sheila A. Mcllraith

AAAI SSS-23

What is a

Reward Machine (RM)?

[^0]
Reward Machines (RMs)

RMs are automata-based reward functions:

Reward Machines (RMs)

RMs are automata-based reward functions:

```
m = 0 # global variable
def get_reward(s):
    if m == 0 and s.at("A"):
        m = 1
    if m == 1 and s.at("B"):
        m = 2
    if m == 2 and s.at("C"):
        m = 3
    if m == 3 and s.at("D"):
        m = 0
        return 1
    return 0
```


Reward Machines (RMs)

RMs are automata-based reward functions:

```
m = 0 # global variable
def get_reward(s):
    if m == 0 and s.at("A"):
        m = 1
    if m == 1 and s.at("B"):
        m = 2
    if m == 2 and s.at("C"):
        m = 3
    if m == 3 and s.at("D"):
        m = 0
        return 1
    return 0
```


... that allow for learning policies faster.

Reward Machines (RMs)

Legend:

- DQRM (ours)
- DHRL-RM
- DHRL
- DDQN

Reward Machines (RMs)

Legend:

- DQRM (ours)
- DHRL-RM
- DHRL
- DDQN
... but the RMs were handcrafted.

Learning Reward Machines for Partially Observable RL

This work:
1 Shows how to learn RMs from experiences (LRM).

Learning Reward Machines for Partially Observable RL

This work:
1 Shows how to learn RMs from experiences (LRM).
2 Uses RMs as memory for partially observable RL.

Learning Reward Machines for Partially Observable RL

This work:
1 Shows how to learn RMs from experiences (LRM).
2 Uses RMs as memory for partially observable RL.
3 Extends QRM to work under partial observability.

Learning Reward Machines for Partially Observable RL

This work:

1 Shows how to learn RMs from experiences (LRM).
2 Uses RMs as memory for partially observable RL.
3 Extends QRM to work under partial observability.
4 Provides a theoretical and empirical analysis of LRM.

The Cookie Domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

Solving the cookie domain requires memory!

The cookie domain

Solving the cookie domain requires memory!

$$
\pi^{*}\left(a \mid o_{t}\right) \ll \pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)
$$

Partially Observable RL

The most popular approach:
Training LSTMs policies using a policy gradient method.

Partially Observable RL

The most popular approach:
Training LSTMs policies using a policy gradient method.
... starves in the cookie domain.

RMs as memory

Reward Machines as memory

If the agent can detect the color of the rooms $(\square, \square, \square, \square)$,

Reward Machines as memory

If the agent can detect the color of the rooms ($\square, \square, \square, \square$), and when it presses the button (O),

Reward Machines as memory

If the agent can detect the color of the rooms ($\square, \square, \square, \square$), and when it presses the button (O), eats a cookie (\odot),

Reward Machines as memory

If the agent can detect the color of the rooms ($\square, \square, \square, \square$), and when it presses the button (O), eats a cookie (\odot), and sees a cookie (\odot),

Reward Machines as memory

If the agent can detect the color of the rooms ($\square, \square, \square, \square$), and when it presses the button (\bigcirc), eats a cookie (\odot), and sees a cookie (\odot), then:

... becomes a "perfect" memory for the cookie domain.

Reward Machines as memory

Reward Machines as memory

Reward Machines as memory

conditions at state u_{0}		
if $(\square \mathrm{O})$	\rightarrow	goto u_{1}
else	\rightarrow	goto u_{0}

Reward Machines as memory

\[

\]

Reward Machines as memory

\[

\]

Reward Machines as memory

Reward Machines as memory

Reward Machines as memory

\[

\]

Reward Machines as memory

\[

\]

Reward Machines as memory

Reward Machines as memory

> | conditions at state u_{1} | | |
| :--- | :--- | :--- |
| if $(\square$ or $\square \odot)$ | \rightarrow | goto u_{2} |
| if $(\square$ or $\square \odot)$ | \rightarrow | goto u_{3} |
| else | \rightarrow | goto u_{1} |

Reward Machines as memory

\[

\]

Reward Machines as memory

Reward Machines as memory

\[

\]

Reward Machines as memory

conditions at state u_{3}		
if $(\square \odot)$	\rightarrow	goto u_{0}
else	\rightarrow	goto u_{3}

Reward Machines as memory

conditions at state u_{0}		
if $(\square \mathrm{O})$	\rightarrow	goto u_{1}
else	\rightarrow	goto u_{0}

Reward Machines as memory

conditions at state u_{0}		
if $(\square \mathrm{O})$	\rightarrow	goto u_{1}
else	\rightarrow	goto u_{0}

Reward Machines as memory

conditions at state u_{0}		
if $(\square \mathrm{O})$	\rightarrow	goto u_{1}
else	\rightarrow	goto u_{0}

Reward Machines as memory

conditions at state u_{0}		
if $(\square \mathrm{O})$	\rightarrow	goto u_{1}
else	\rightarrow	goto u_{0}

Reward Machines as memory

Why is this a perfect memory?

Reward Machines as memory

Why is this a perfect memory?

$$
\pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)=\pi^{*}\left(a \mid o_{t}, u_{t}\right)
$$

Reward Machines as memory

Why is this a perfect memory?

$$
\pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)=\pi^{*}\left(a \mid o_{t}, u_{t}\right)
$$

Hard problem $\xrightarrow{\mathrm{RM}}$ Easy problem

How to learn such RMs?

Learning Reward Machines

Given a set of detectors (e.g., $\{\square, \square, \square, \square, \mathrm{O}, \odot, \odot\}$) and traces \mathcal{T},

Learning Reward Machines

Given a set of detectors (e.g., $\{\square, \square, \square, \square, \bigcirc, \odot, \odot\}$) and traces \mathcal{T}, learning RMs is a discrete optimization problem:

$$
\begin{align*}
\underset{\left\langle U, u_{0}, \delta_{u}, \delta_{r}\right\rangle}{\operatorname{minimize}} & \sum_{i \in I} \sum_{t \in T_{i}} \log \left(\left|N_{x_{i, t}, L\left(e_{i, t}\right)}\right|\right) \tag{LRM}\\
\text { s.t. } & \left\langle U, u_{0}, \delta_{u}, \delta_{r}\right\rangle \in \mathcal{R}_{\mathcal{P}} \tag{1}\\
& |U| \leq u_{\max } \tag{2}\\
& x_{i, t} \in U \tag{3}\\
& x_{i, 0}=u_{0} \tag{4}\\
& x_{i, t+1}=\delta_{u}\left(x_{i, t}, L\left(e_{i, t+1}\right)\right) \tag{5}\\
& N_{u, I} \subseteq 2^{2^{\mathcal{P}}} \tag{6}\\
& L\left(e_{i, t+1}\right) \in N_{x_{i, t}, L\left(e_{i, t}\right)} \tag{7}
\end{align*}
$$

$$
\begin{array}{r}
\forall i \in I, t \in T_{i} \cup\left\{t_{i}\right\} \\
\forall i \in I \\
\forall i \in I, t \in T_{i} \\
\forall u \in U, I \in 2^{\mathcal{P}} \\
\forall i \in I, t \in T_{i}
\end{array}
$$

Learning Reward Machines

Given a set of detectors (e.g., $\{\square, \square, \square, \square, \bigcirc, \odot, \odot\}$) and traces \mathcal{T}, learning RMs is a discrete optimization problem:

$$
\begin{array}{rlr}
\underset{\left\langle U, u_{0}, \delta_{u}, \delta_{r}\right\rangle}{\operatorname{minimize}} & \sum_{i \in I} \sum_{t \in T_{i}} \log \left(\left|N_{x_{i, t}, L\left(e_{i, t}\right)}\right|\right) & \\
\text { s.t. } & \left\langle U, u_{0}, \delta_{u}, \delta_{r}\right\rangle \in \mathcal{R}_{\mathcal{P}} & \\
& |U| \leq u_{\max } & \forall i \in I, t \in T_{i} \cup\left\{t_{i}\right\} \\
& x_{i, t} \in U & \forall i \in I \\
& x_{i, 0}=u_{0} & \forall i \in I, t \in T_{i} \\
& x_{i, t+1}=\delta_{u}\left(x_{i, t}, L\left(e_{i, t+1}\right)\right) & \forall u \in U, I \in 2^{\mathcal{P}} \\
& N_{u, I} \subseteq 2^{2 \mathcal{P}} & \forall i \in I, t \in T_{i} \\
& L\left(e_{i, t+1}\right) \in N_{x_{i, t}, L\left(e_{i, t}\right)} & \tag{7}
\end{array}
$$

... that we solved using local search.

Overall approach

Results

Results

Cookie Domain

2-Keys Domain

\[

\]

* Note: The detectors were also given to the baselines.

Discussion

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

Symbol Domain

Cookie Domain

2-Keys Domain

Legend:	- A3C	- PPO	- LRM + DDQN
¢-optimal	- ACER	- DDQN	- LRM+DQRM

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

$$
\begin{array}{lll}
\text { Legend: } & \text { - A3C } & \text { - PPO } \\
\epsilon \text {-optimal } & \text { - ACER } & \text { - } \mathrm{DDQN}
\end{array}
$$

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
(Add extra traces if the RM is imperfect)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
(Add extra traces if the RM is imperfect)

What's the learning objective?

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
A. LRM tries to solve POMDPs

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
A. LRM tries to solve POMDPs

POMDPs are hard because:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(o_{t+1} \mid o_{t}, a_{t}\right)$
- $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(r_{t+1} \mid o_{t}, a_{t}\right)$
- As a result, $\pi^{*}\left(a \mid o_{t}\right) \ll \pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
A. LRM tries to solve POMDPs

POMDPs are hard because:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(o_{t+1} \mid o_{t}, a_{t}\right)$
- $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(r_{t+1} \mid o_{t}, a_{t}\right)$

■ As a result, $\pi^{*}\left(a \mid o_{t}\right) \ll \pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)$
Thus, LRM's learning objective is to find a machine such that:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1} \mid o_{t}, u_{t}, a_{t}\right)$

■ $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(r_{t+1} \mid o_{t}, u_{t}, a_{t}\right)$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
A. LRM tries to solve POMDPs

POMDPs are hard because:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(o_{t+1} \mid o_{t}, a_{t}\right)$
- $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(r_{t+1} \mid o_{t}, a_{t}\right)$

■ As a result, $\pi^{*}\left(a \mid o_{t}\right) \ll \pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)$
Thus, LRM's learning objective is to find a machine such that:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1} \mid o_{t}, u_{t}, a_{t}\right)$
- $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(r_{t+1} \mid o_{t}, u_{t}, a_{t}\right)$

Result: $\pi^{*}\left(a_{t} \mid o_{t}, u_{t}\right)$ optimally solves the POMDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
A. LRM tries to solve POMDPs

In the cookie domain, LRM learns this RM because it holds that

$$
P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1} \mid o_{t}, u_{t}, a_{t}\right)
$$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

NMRDPs are hard because:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1} \mid o_{t}, a_{t}\right)$
- $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(r_{t+1} \mid o_{t}, a_{t}\right)$

■ As a result, $\pi^{*}\left(a \mid o_{t}\right) \ll \pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

NMRDPs are hard because:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1} \mid o_{t}, a_{t}\right)$
- $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(r_{t+1} \mid o_{t}, a_{t}\right)$

■ As a result, $\pi^{*}\left(a \mid o_{t}\right) \ll \pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)$

Thus, their learning objective is to find the smallest machine such that:
■ $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(r_{t+1} \mid o_{t}, u_{t}, a_{t}\right)$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

NMRDPs are hard because:

- $P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1} \mid o_{t}, a_{t}\right)$
- $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(r_{t+1} \mid o_{t}, a_{t}\right)$

■ As a result, $\pi^{*}\left(a \mid o_{t}\right) \ll \pi^{*}\left(a \mid o_{0}, \cdots, o_{t}\right)$

Thus, their learning objective is to find the smallest machine such that:
■ $P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(r_{t+1} \mid o_{t}, u_{t}, a_{t}\right)$

Result: $\pi^{*}\left(a_{t} \mid o_{t}, u_{t}\right)$ optimally solves the NMRDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:

$$
P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(o_{t+1} \mid o_{t}, a_{t}\right)
$$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:

$$
P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(o_{t+1} \mid o_{t}, a_{t}\right)
$$

And

$$
P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(r_{t+1} \mid o_{t}, a_{t}\right)
$$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:

$$
P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(o_{t+1} \mid o_{t}, a_{t}\right)
$$

And

$$
P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(r_{t+1} \mid o_{t}, a_{t}\right)
$$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.
In the cookie domain:

$$
P\left(o_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right) \neq P\left(o_{t+1} \mid o_{t}, a_{t}\right)
$$

And

$$
P\left(r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(r_{t+1} \mid o_{t}, a_{t}\right)
$$

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:

- $P\left(o_{t+1}, r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1}, r_{t+1} \mid o_{t}, a_{t}\right)$
... but MDPs with sparse rewards are hard.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:

- $P\left(o_{t+1}, r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1}, r_{t+1} \mid o_{t}, a_{t}\right)$
... but MDPs with sparse rewards are hard.
Thus, their learning objective is to find the smallest machine such that:
- It accepts traces that can be generated by interacting with the environment.
- It rejects traces that cannot be generated by interacting with the environment.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:
■ $P\left(o_{t+1}, r_{t+1} \mid o_{0}, \cdots, o_{t}, a_{t}\right)=P\left(o_{t+1}, r_{t+1} \mid o_{t}, a_{t}\right)$
... but MDPs with sparse rewards are hard.
Thus, their learning objective is to find the smallest machine such that:

- It accepts traces that can be generated by interacting with the environment.
- It rejects traces that cannot be generated by interacting with the environment.

Result: They learn a high-level model that is then used to encourage exploration.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

These methods do not work in our domains because our domains are not MDPs.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?
C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

These methods do not work in our domains because our domains are not MDPs.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:
A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:
A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what's the right learning objective?

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:
A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what's the right learning objective? -_(")//-

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:
A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what's the right learning objective? - _(ツ)_/-

Method	Cookie	Symbol	2-Keys
JIRP	0.6 ± 0.8	-31.1 ± 13.5	2.0 ± 1.4
DeepSynth	0.4 ± 0.6	-30.4 ± 14.0	2.4 ± 1.5
LRM (ours)	$\mathbf{1 9 7 . 2} \pm \mathbf{2 . 1}$	$\mathbf{4 6 0 . 4} \pm \mathbf{1 5 . 7}$	$\mathbf{8 6 . 6} \pm \mathbf{9 . 4}$

Concluding Remarks

https://bitbucket.org/RToroIcarte/lrm

Thanks! :)

Ethan

Toryn

Rick

Sheila

[^0]: *Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning by Toro Icarte et al. (ICML, 2018)

