
Learning Reward Machines for Partially Observable
Reinforcement Learning

Rodrigo Toro Icarte Ethan Waldie Toryn Q. Klassen Richard Valenzano
Margarita P. Castro Sheila A. McIlraith

AAAI SSS-23

What is a

Reward Machine (RM)?

∗Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

by Toro Icarte et al. (ICML, 2018)

Reward Machines (RMs)

RMs are automata-based reward functions:

1 m = 0 # global variable

2 def get_reward(s):

3 if m == 0 and s.at("A"):

4 m = 1

5 if m == 1 and s.at("B"):

6 m = 2

7 if m == 2 and s.at("C"):

8 m = 3

9 if m == 3 and s.at("D"):

10 m = 0

11 return 1

12 return 0

u0

u1

u2

u3

⟨A, 0⟩

⟨¬A, 0⟩

⟨B, 0⟩

⟨¬B, 0⟩

⟨C, 0⟩

⟨¬C, 0⟩

⟨D, 1⟩

⟨¬D, 0⟩

... that allow for learning policies faster.

Reward Machines (RMs)

RMs are automata-based reward functions:

1 m = 0 # global variable

2 def get_reward(s):

3 if m == 0 and s.at("A"):

4 m = 1

5 if m == 1 and s.at("B"):

6 m = 2

7 if m == 2 and s.at("C"):

8 m = 3

9 if m == 3 and s.at("D"):

10 m = 0

11 return 1

12 return 0

u0

u1

u2

u3

⟨A, 0⟩

⟨¬A, 0⟩

⟨B, 0⟩

⟨¬B, 0⟩

⟨C, 0⟩

⟨¬C, 0⟩

⟨D, 1⟩

⟨¬D, 0⟩

... that allow for learning policies faster.

Reward Machines (RMs)

RMs are automata-based reward functions:

1 m = 0 # global variable

2 def get_reward(s):

3 if m == 0 and s.at("A"):

4 m = 1

5 if m == 1 and s.at("B"):

6 m = 2

7 if m == 2 and s.at("C"):

8 m = 3

9 if m == 3 and s.at("D"):

10 m = 0

11 return 1

12 return 0

u0

u1

u2

u3

⟨A, 0⟩

⟨¬A, 0⟩

⟨B, 0⟩

⟨¬B, 0⟩

⟨C, 0⟩

⟨¬C, 0⟩

⟨D, 1⟩

⟨¬D, 0⟩

... that allow for learning policies faster.

Reward Machines (RMs)

5 · 105 1 · 106 1.5 · 106 2 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or

m
al

iz
ed

di
sc

ou
nt

ed
re

w
ar

d

Water World

Legend:
DQRM (ours)
DHRL-RM
DHRL
DDQN

... but the RMs were handcrafted.

Reward Machines (RMs)

5 · 105 1 · 106 1.5 · 106 2 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or

m
al

iz
ed

di
sc

ou
nt

ed
re

w
ar

d

Water World

Legend:
DQRM (ours)
DHRL-RM
DHRL
DDQN

... but the RMs were handcrafted.

Learning Reward Machines for Partially Observable RL

This work:

1 Shows how to learn RMs from experiences (LRM).

2 Uses RMs as memory for partially observable RL.

3 Extends QRM to work under partial observability.

4 Provides a theoretical and empirical analysis of LRM.

Learning Reward Machines for Partially Observable RL

This work:

1 Shows how to learn RMs from experiences (LRM).

2 Uses RMs as memory for partially observable RL.

3 Extends QRM to work under partial observability.

4 Provides a theoretical and empirical analysis of LRM.

Learning Reward Machines for Partially Observable RL

This work:

1 Shows how to learn RMs from experiences (LRM).

2 Uses RMs as memory for partially observable RL.

3 Extends QRM to work under partial observability.

4 Provides a theoretical and empirical analysis of LRM.

Learning Reward Machines for Partially Observable RL

This work:

1 Shows how to learn RMs from experiences (LRM).

2 Uses RMs as memory for partially observable RL.

3 Extends QRM to work under partial observability.

4 Provides a theoretical and empirical analysis of LRM.

The Cookie Domain

The cookie domain

Agent

Button

(Cookie)

The cookie domain

Agent

Button

(Cookie)

The cookie domain

Agent

Button

(Cookie)

The cookie domain

Agent

Button

(Cookie)

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

(+1 Reward)

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

Solving the cookie domain requires memory!

The cookie domain

Solving the cookie domain requires memory!

π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Partially Observable RL

The most popular approach:

Training LSTMs policies using a policy gradient method.

... starves in the cookie domain.

0.5 1 1.5 2 2.5 3

0

100

200

Training steps (in millions)

R
ew

ar
d
p
er

1
0,
00
0
st
ep

s

Cookie Domain

Legend:
ϵ-optimal
ACER
A3C
PPO
DDQN

Partially Observable RL

The most popular approach:

Training LSTMs policies using a policy gradient method.

... starves in the cookie domain.

0.5 1 1.5 2 2.5 3

0

100

200

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep

s
Cookie Domain

Legend:
ϵ-optimal
ACER
A3C
PPO
DDQN

RMs as memory

Reward Machines as memory

If the agent can detect the color of the rooms (, , ,),

and when it presses the
button (), eats a cookie (), and sees a cookie (), then:

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

... becomes a “perfect” memory for the cookie domain.

Reward Machines as memory

If the agent can detect the color of the rooms (, , ,), and when it presses the
button (),

eats a cookie (), and sees a cookie (), then:

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

... becomes a “perfect” memory for the cookie domain.

Reward Machines as memory

If the agent can detect the color of the rooms (, , ,), and when it presses the
button (), eats a cookie (),

and sees a cookie (), then:

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

... becomes a “perfect” memory for the cookie domain.

Reward Machines as memory

If the agent can detect the color of the rooms (, , ,), and when it presses the
button (), eats a cookie (), and sees a cookie (),

then:

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

... becomes a “perfect” memory for the cookie domain.

Reward Machines as memory

If the agent can detect the color of the rooms (, , ,), and when it presses the
button (), eats a cookie (), and sees a cookie (), then:

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

... becomes a “perfect” memory for the cookie domain.

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u1

if (or) → goto u2
if (or) → goto u3
else → goto u1

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u3

if () → goto u0
else → goto u3

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

conditions at state u0

if () → goto u1
else → goto u0

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

Why is this a perfect memory?

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

Why is this a perfect memory?

π∗(a|o0, · · · , ot) = π∗(a|ot , ut)

Reward Machines as memory

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

Why is this a perfect memory?

π∗(a|o0, · · · , ot) = π∗(a|ot , ut)

Hard problem
RM−−→ Easy problem

How to learn such RMs?

Learning Reward Machines

Given a set of detectors (e.g., { , , , , , , }) and traces T ,

learning RMs is a
discrete optimization problem:

minimize
⟨U,u0,δu ,δr ⟩

∑
i∈I

∑
t∈Ti

log(|Nxi,t ,L(ei,t)
|) (LRM)

s.t. ⟨U, u0, δu , δr ⟩ ∈ RP (1)

|U| ≤ umax (2)

xi,t ∈ U ∀i ∈ I , t ∈ Ti ∪ {ti} (3)

xi,0 = u0 ∀i ∈ I (4)

xi,t+1 = δu(xi,t , L(ei,t+1)) ∀i ∈ I , t ∈ Ti (5)

Nu,l ⊆ 22
P

∀u ∈ U, l ∈ 2P (6)

L(ei,t+1) ∈ Nxi,t ,L(ei,t)
∀i ∈ I , t ∈ Ti (7)

... that we solved using local search.

Learning Reward Machines

Given a set of detectors (e.g., { , , , , , , }) and traces T , learning RMs is a
discrete optimization problem:

minimize
⟨U,u0,δu ,δr ⟩

∑
i∈I

∑
t∈Ti

log(|Nxi,t ,L(ei,t)
|) (LRM)

s.t. ⟨U, u0, δu , δr ⟩ ∈ RP (1)

|U| ≤ umax (2)

xi,t ∈ U ∀i ∈ I , t ∈ Ti ∪ {ti} (3)

xi,0 = u0 ∀i ∈ I (4)

xi,t+1 = δu(xi,t , L(ei,t+1)) ∀i ∈ I , t ∈ Ti (5)

Nu,l ⊆ 22
P

∀u ∈ U, l ∈ 2P (6)

L(ei,t+1) ∈ Nxi,t ,L(ei,t)
∀i ∈ I , t ∈ Ti (7)

... that we solved using local search.

Learning Reward Machines

Given a set of detectors (e.g., { , , , , , , }) and traces T , learning RMs is a
discrete optimization problem:

minimize
⟨U,u0,δu ,δr ⟩

∑
i∈I

∑
t∈Ti

log(|Nxi,t ,L(ei,t)
|) (LRM)

s.t. ⟨U, u0, δu , δr ⟩ ∈ RP (1)

|U| ≤ umax (2)

xi,t ∈ U ∀i ∈ I , t ∈ Ti ∪ {ti} (3)

xi,0 = u0 ∀i ∈ I (4)

xi,t+1 = δu(xi,t , L(ei,t+1)) ∀i ∈ I , t ∈ Ti (5)

Nu,l ⊆ 22
P

∀u ∈ U, l ∈ 2P (6)

L(ei,t+1) ∈ Nxi,t ,L(ei,t)
∀i ∈ I , t ∈ Ti (7)

... that we solved using local search.

Overall approach

Collect
Traces

(many traces!)

Optimization
Model

Local
Search

Proposed
RM

u0

u1 u2

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

RL agent
≈ π∗

θ(a|o, u)

1) DDQN
2) DQRM

(Add extra traces if the RM is imperfect)

Results

Results

0.5 1 1.5 2

0

200

400

Training steps (in millions)

R
ew

ar
d
p
er

1
0,
0
0
0
st
ep
s

Symbol Domain

0.5 1 1.5 2 2.5 3

0

100

200

Training steps (in millions)
R
ew

ar
d
p
er

1
0,
00

0
st
ep

s

Cookie Domain

1 2 3 4

0

50

100

150

Training steps (in millions)

R
ew

a
rd

p
er

10
,0
00

st
ep

s

2-Keys Domain

Legend: A3C PPO LRM+DDQN
ϵ-optimal ACER DDQN LRM+DQRM

∗Note: The detectors were also given to the baselines.

Discussion

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

5 10 15 20 25

0

200

400

Training steps (in millions)

R
ew

ar
d
p
er

1
0,
0
0
0
st
ep
s

Symbol Domain

5 10 15 20 25

0

100

200

Training steps (in millions)

R
ew

ar
d
p
er

1
0,
00

0
st
ep

s

Cookie Domain

5 10 15 20 25

0

50

100

150

Training steps (in millions)

R
ew

a
rd

p
er

10
,0
00

st
ep

s

2-Keys Domain

Legend: A3C PPO LRM+DDQN
ϵ-optimal ACER DDQN LRM+DQRM

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

2 4 6 8 10

0

50

100

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep
s

Large Cookie Domain

0 10 20 30 40 50

0

50

100

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep
s

Large Cookie Domain

Legend: A3C PPO LRM+DDQN
ϵ-optimal ACER DDQN LRM+DQRM

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

2 4 6 8 10

0

50

100

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep
s

Large Cookie Domain

0 10 20 30 40 50

0

50

100

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep
s

Large Cookie Domain

Legend: A3C PPO LRM+DDQN
ϵ-optimal ACER DDQN LRM+DQRM

Frequently asked questions

1) Would the LSTM-based baselines eventually learn to solve these domains?

2 4 6 8 10

0

50

100

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep
s

Large Cookie Domain

0 10 20 30 40 50

0

50

100

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep
s

Large Cookie Domain

Legend: A3C PPO LRM+DDQN
ϵ-optimal ACER DDQN LRM+DQRM

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Collect
Traces

(many traces!)

Optimization
Model

Local
Search

Proposed
RM

u0

u1 u2

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

RL agent
≈ π∗

θ(a|o, u)

1) DDQN
2) DQRM

(Add extra traces if the RM is imperfect)

What’s the learning objective?

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Collect
Traces

(many traces!)

Optimization
Model

Local
Search

Proposed
RM

u0

u1 u2

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

RL agent
≈ π∗

θ(a|o, u)

1) DDQN
2) DQRM

(Add extra traces if the RM is imperfect)

What’s the learning objective?

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Collect
Traces

(many traces!)

Optimization
Model

Local
Search

Proposed
RM

u0

u1 u2

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

RL agent
≈ π∗

θ(a|o, u)

1) DDQN
2) DQRM

(Add extra traces if the RM is imperfect)

What’s the learning objective?

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

A. LRM tries to solve POMDPs

POMDPs are hard because:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, LRM’s learning objective is to find a machine such that:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , ut , at)
P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the POMDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

A. LRM tries to solve POMDPs

POMDPs are hard because:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, LRM’s learning objective is to find a machine such that:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , ut , at)
P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the POMDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

A. LRM tries to solve POMDPs

POMDPs are hard because:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, LRM’s learning objective is to find a machine such that:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , ut , at)
P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the POMDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

A. LRM tries to solve POMDPs

POMDPs are hard because:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, LRM’s learning objective is to find a machine such that:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , ut , at)
P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the POMDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

A. LRM tries to solve POMDPs

u0

u1 u2u3

⟨o/w, 0⟩

⟨o/w, 0⟩ ⟨o/w, 0⟩⟨o/w, 0⟩

⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 0⟩;
⟨ , 0⟩

⟨ , 1⟩⟨ , 1⟩

⟨ , 0⟩⟨ , 0⟩

In the cookie domain, LRM learns this RM because it holds that
P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , ut , at)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

NMRDPs are hard because:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, their learning objective is to find the smallest machine such that:

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the NMRDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

NMRDPs are hard because:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, their learning objective is to find the smallest machine such that:

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the NMRDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

NMRDPs are hard because:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, their learning objective is to find the smallest machine such that:

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the NMRDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

NMRDPs are hard because:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, their learning objective is to find the smallest machine such that:

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the NMRDP.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)

And

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , at)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)

And

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , at)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)

And

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , at)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)

And

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , at)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

u0

〈 , 1〉;
〈 , 1〉;
〈o/w, 0〉

In the cookie domain:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)

And

P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , at)

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:

P(ot+1, rt+1|o0, · · · , ot , at) = P(ot+1, rt+1|ot , at)
... but MDPs with sparse rewards are hard.

Thus, their learning objective is to find the smallest machine such that:

It accepts traces that can be generated by interacting with the environment.

It rejects traces that cannot be generated by interacting with the environment.

Result: They learn a high-level model that is then used to encourage exploration.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:

P(ot+1, rt+1|o0, · · · , ot , at) = P(ot+1, rt+1|ot , at)
... but MDPs with sparse rewards are hard.

Thus, their learning objective is to find the smallest machine such that:

It accepts traces that can be generated by interacting with the environment.

It rejects traces that cannot be generated by interacting with the environment.

Result: They learn a high-level model that is then used to encourage exploration.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:

P(ot+1, rt+1|o0, · · · , ot , at) = P(ot+1, rt+1|ot , at)
... but MDPs with sparse rewards are hard.

Thus, their learning objective is to find the smallest machine such that:

It accepts traces that can be generated by interacting with the environment.

It rejects traces that cannot be generated by interacting with the environment.

Result: They learn a high-level model that is then used to encourage exploration.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:

P(ot+1, rt+1|o0, · · · , ot , at) = P(ot+1, rt+1|ot , at)
... but MDPs with sparse rewards are hard.

Thus, their learning objective is to find the smallest machine such that:

It accepts traces that can be generated by interacting with the environment.

It rejects traces that cannot be generated by interacting with the environment.

Result: They learn a high-level model that is then used to encourage exploration.

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

These methods do not work in our
domains because our domains are

not MDPs.

u0

u1

u2

u3u4

u5

u6u7

⟨ , 0⟩⟨ , 0⟩;⟨ , 0⟩

⟨ , 0⟩
⟨ , 0⟩

⟨ , 0⟩

⟨ , 0⟩

⟨ , 0⟩

⟨ , 0⟩

⟨ , 1⟩

⟨ , 0⟩

⟨ , 1⟩

⟨ , 0⟩

⟨ , 0⟩⟨ , 0⟩

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

These methods do not work in our
domains because our domains are

not MDPs.

u0

u1

u2

u3u4

u5

u6u7

⟨ , 0⟩⟨ , 0⟩;⟨ , 0⟩

⟨ , 0⟩
⟨ , 0⟩

⟨ , 0⟩

⟨ , 0⟩

⟨ , 0⟩

⟨ , 0⟩

⟨ , 1⟩

⟨ , 0⟩

⟨ , 1⟩

⟨ , 0⟩

⟨ , 0⟩⟨ , 0⟩

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:

A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what’s the right learning objective?

Method Cookie Symbol 2-Keys

JIRP 0.6 ± 0.8 -31.1 ± 13.5 2.0 ± 1.4
DeepSynth 0.4 ± 0.6 -30.4 ± 14.0 2.4 ± 1.5
LRM (ours) 197.2 ± 2.1 460.4 ± 15.7 86.6 ± 9.4

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:

A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what’s the right learning objective?

Method Cookie Symbol 2-Keys

JIRP 0.6 ± 0.8 -31.1 ± 13.5 2.0 ± 1.4
DeepSynth 0.4 ± 0.6 -30.4 ± 14.0 2.4 ± 1.5
LRM (ours) 197.2 ± 2.1 460.4 ± 15.7 86.6 ± 9.4

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:

A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what’s the right learning objective?

Method Cookie Symbol 2-Keys

JIRP 0.6 ± 0.8 -31.1 ± 13.5 2.0 ± 1.4
DeepSynth 0.4 ± 0.6 -30.4 ± 14.0 2.4 ± 1.5
LRM (ours) 197.2 ± 2.1 460.4 ± 15.7 86.6 ± 9.4

Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:

A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what’s the right learning objective?

Method Cookie Symbol 2-Keys

JIRP 0.6 ± 0.8 -31.1 ± 13.5 2.0 ± 1.4
DeepSynth 0.4 ± 0.6 -30.4 ± 14.0 2.4 ± 1.5
LRM (ours) 197.2 ± 2.1 460.4 ± 15.7 86.6 ± 9.4

Concluding Remarks
https://bitbucket.org/RToroIcarte/lrm

Thanks! :)

Rodrigo Ethan Toryn Rick Margarita Sheila

