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What is a

Reward Machine (RM)?

∗Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

by Toro Icarte et al. (ICML, 2018)



Reward Machines (RMs)

RMs are automata-based reward functions:

1 m = 0 # global variable

2 def get_reward(s):

3 if m == 0 and s.at("A"):

4 m = 1

5 if m == 1 and s.at("B"):

6 m = 2

7 if m == 2 and s.at("C"):

8 m = 3

9 if m == 3 and s.at("D"):

10 m = 0

11 return 1

12 return 0
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⟨D, 1⟩

⟨¬D, 0⟩

... that allow for learning policies faster.
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Reward Machines (RMs)
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... but the RMs were handcrafted.
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Learning Reward Machines for Partially Observable RL

This work:

1 Shows how to learn RMs from experiences (LRM).

2 Uses RMs as memory for partially observable RL.

3 Extends QRM to work under partial observability.

4 Provides a theoretical and empirical analysis of LRM.
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The cookie domain

Solving the cookie domain requires memory!



The cookie domain

Solving the cookie domain requires memory!

π∗(a|ot) ≪ π∗(a|o0, · · · , ot)



Partially Observable RL

The most popular approach:

Training LSTMs policies using a policy gradient method.

... starves in the cookie domain.

0.5 1 1.5 2 2.5 3

0

100

200

Training steps (in millions)

R
ew

ar
d
p
er

1
0,
00
0
st
ep

s

Cookie Domain

Legend:
ϵ-optimal
ACER
A3C
PPO
DDQN



Partially Observable RL

The most popular approach:

Training LSTMs policies using a policy gradient method.

... starves in the cookie domain.

0.5 1 1.5 2 2.5 3

0

100

200

Training steps (in millions)

R
ew

ar
d
p
er

10
,0
00

st
ep

s
Cookie Domain

Legend:
ϵ-optimal
ACER
A3C
PPO
DDQN



RMs as memory



Reward Machines as memory
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Hard problem
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How to learn such RMs?



Learning Reward Machines

Given a set of detectors (e.g., { , , , , , , }) and traces T ,

learning RMs is a
discrete optimization problem:

minimize
⟨U,u0,δu ,δr ⟩

∑
i∈I

∑
t∈Ti

log(|Nxi,t ,L(ei,t )
|) (LRM)

s.t. ⟨U, u0, δu , δr ⟩ ∈ RP (1)

|U| ≤ umax (2)

xi,t ∈ U ∀i ∈ I , t ∈ Ti ∪ {ti} (3)

xi,0 = u0 ∀i ∈ I (4)

xi,t+1 = δu(xi,t , L(ei,t+1)) ∀i ∈ I , t ∈ Ti (5)

Nu,l ⊆ 22
P

∀u ∈ U, l ∈ 2P (6)

L(ei,t+1) ∈ Nxi,t ,L(ei,t )
∀i ∈ I , t ∈ Ti (7)

... that we solved using local search.
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Overall approach
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(Add extra traces if the RM is imperfect)
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∗Note: The detectors were also given to the baselines.
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1) Would the LSTM-based baselines eventually learn to solve these domains?
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A. LRM tries to solve POMDPs

POMDPs are hard because:

P(ot+1|o0, · · · , ot , at) ̸= P(ot+1|ot , at)
P(rt+1|o0, · · · , ot , at) ̸= P(rt+1|ot , at)
As a result, π∗(a|ot) ≪ π∗(a|o0, · · · , ot)

Thus, LRM’s learning objective is to find a machine such that:

P(ot+1|o0, · · · , ot , at) = P(ot+1|ot , ut , at)
P(rt+1|o0, · · · , ot , at) = P(rt+1|ot , ut , at)

Result: π∗(at |ot , ut) optimally solves the POMDP.
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B. Methods that solve NMRDPs (e.g., JIRP, ISA, SRMI)

These methods do not work in our domains because our domains are not NMRDPs.

In the cookie domain:
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Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

C. Methods that solve MDPs with sparse rewards (e.g., DeepSynth)

MDPs are usually easy:

P(ot+1, rt+1|o0, · · · , ot , at) = P(ot+1, rt+1|ot , at)
... but MDPs with sparse rewards are hard.

Thus, their learning objective is to find the smallest machine such that:

It accepts traces that can be generated by interacting with the environment.

It rejects traces that cannot be generated by interacting with the environment.

Result: They learn a high-level model that is then used to encourage exploration.
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Frequently asked questions

2) How does LRM relate to other methods that learn automata to aid RL agents?

Summary

There are three learning objectives for combining automata learning with RL:

A. [LRM] Learn an RM that makes the whole problem Markovian.
B. [JIRP] Learn the smallest DFA that makes the reward function Markovian.
C. [DeepSynth] Learn a high-level model of the environment.

So, what’s the right learning objective?

Method Cookie Symbol 2-Keys

JIRP 0.6 ± 0.8 -31.1 ± 13.5 2.0 ± 1.4
DeepSynth 0.4 ± 0.6 -30.4 ± 14.0 2.4 ± 1.5
LRM (ours) 197.2 ± 2.1 460.4 ± 15.7 86.6 ± 9.4
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Concluding Remarks
https://bitbucket.org/RToroIcarte/lrm

Thanks! :)

Rodrigo Ethan Toryn Rick Margarita Sheila


