VERIFICATION AND REALIZABILITY IN FINITE-HORIZON MULTIAGENT SYSTEMS

Senthil Rajasekaran and Moshe Y. Vardi Rice University

REACTIVE SYSTEMS

STRATEGIES

Strategy for agent i is given by a function $\pi_i: \Sigma^* \to \Sigma_i$

Deterministic finite state transducer

Valuations of Agent i's variables

MULTIAGENT SYSTEMS

VERIFICATION AND REALIZABILITY

Verification: **Given** a strategy for each agent, **check** if it's a Nash equilibrium.

Realizability: **Determine** whether a Nash equilibrium **exists**.

AUTOMATON TYPES

COMPLEXITY-THEORETIC CHARACTERIZATION

Goal Specification	Verification	Realizability
Deterministic	PSPACE-complete	PSPACE-complete
Nondeterministic	PSPACE-complete	EXPTIME-complete
Alternating	PSPACE-complete	2EXPTIME-complete

Verification does not seem to care about the succinctness of the automaton representation, but this induces a strict hierarchy for **Realizability**.

FUTURE WORK

Deterministic setting with quantitative goals induced from weighted transitions and discounted sums

