LTL2Action

Generalizing LTL Instructions for Multi-Task RL

- (B
.
Pashootan Vaezipoor Andrew Li Rodrigo Toro Icarte Sheila Mcllraith

C 1] T
3,
\ -
vt o CIEARN s
TORONTQ istirure | Vecreur

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

* Along-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

* Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task

* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task

* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)

n(als,)

Instruction
(task)

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task

* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)
* Expressiveness: Temporal modalities

pi=p| | Ay | Op | Uy | Op | Op

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)
* Expressiveness: Temporal modalities
* Unambiguous semantics: instructions are automatically mapped to reward

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)
* Expressiveness: Temporal modalities
* Unambiguous semantics: instructions are automatically mapped to reward
* Compositional syntax: can be used to procedurally generate novel tasks

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)
* Expressiveness: Temporal modalities
* Unambiguous semantics: instructions are automatically mapped to reward
* Compositional syntax: can be used to procedurally generate novel tasks

Theoretical advantages:
* Non-myopia
* Capable of handling non-Markovian rewards

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)
* Expressiveness: Temporal modalities
* Unambiguous semantics: instructions are automatically mapped to reward
* Compositional syntax: can be used to procedurally generate novel tasks

Theoretical advantages:
* Non-myopia
* Capable of handling non-Markovian rewards

Empirical advantages:
e Discrete and Continuous domains
e Zero-shot generalization to unseen tasks

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

The Idea

PN Primitive events:
“ED (Propositions)
So=oo * pickup_coal

* pickup_wood
* use_furnace
* on_lava

(3

(3

ﬁ

[q]
g
[]M
g

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

The Idea

Primitive events:
(Propositions)
* pickup_coal

* pickup_wood
* use_furnace
* on_lava

(3

(3

(3

3

! (3 ¢

ﬁ

[q]
lq]
n“
8

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

The Idea

Task: “Get coal or wood, in any order, then used the furnace.”

eventually ((pickup_coal or pickup wood) and (eventually use_ furnace))

Primitive events:
(Propositions)
* pickup_coal

pickup_wood
use_furnace
on_lava

(3

(3

(3

3

! (3 ¢

ﬁ

[q]
lq]
u“
g

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

The Idea

Task: “Get coal or wood, in any order, then used the furnace.”

eventually ((pickup_coal or pickup wood) and (eventually use_ furnace))

Primitive events:
(Propositions)
* pickup_coal

* pickup_wood
* use_furnace
* on_lava

¢

(3

(3

! (3 ¢

ﬁ

[q]
lq]
HN
g

(1 if ¢ is satisfied
R=< —1 if ¢ is falsified
0 otherwise

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

The Idea

Task: “Get coal or wood, in any order, then used the furnace.”

eventually ((pickup_coal or pickup wood) and (eventually use_ furnace))

=

¢

(3

(3

! (3 ¢

ﬁ

|

g
q
(
q
a

if ¢ is satisfied
if ¢ is falsified
otherwise

Primitive events:
(Propositions)

* pickup_coal
* pickup_wood

* use_furnace
* on_lava

This reward
scheme is non-
Markovian!

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Task decomposition

Decompose tasks to subtasks that

can be individually solved
leads to suboptimal policies!

-~

The Idea

!

ﬁ

“Get coal or wood” B g

eventually ((pickup_coal or pickup wood)

1

“Use the furnace” _ _
~

eventually use_furnace S B

Myopic 1

Complete!

True

We use LTL Progression [Bacchus
Kabanza, 2000] tOo automatically
simplify the instructions over
time as parts of the task are
solved

“Get coal or wood, then use the furnace.”
/ \ eventuall)

ly ((pickup_coal or pickup wood) and (eventually use_furnace)

1
1
!
1

l

___{*Usethe furnace.’)

eventually use_furnace

Progteéssion

Complete!
True

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Architecture
r(als, @)

Env Module

* It’s easy to incorporate these concepts into a standard RL framework (e.g., PPO)

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Architecture

RL Module

Env Module

* It’s easy to incorporate these concepts into a standard RL framework (e.g., PPO)
* Key Results:

* We outperform other approaches that do not use LTL progression or are myopic
* Compositional architecture (GNN) encode formulae better than seq models
* We generalize to unseen (and more complex) instructions than those in training

Ours = ~ _ |

Discounted return

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

> —0.6
—0.4
Ours
=40.2
No-Prog
Myopic = 0.0
No-LTL
—-0.:
| | |
0 5 10 15 20
Frames (millions)

Gridworld
(Discrete)

Results

0.7
Ours = ~|_ _ R 06
= —0.5
2
L —0.4
3
flé —0.3
= Ours
S 0.2
2] .
= Myopic
A —0.1
No-Prog
—0.0
| | |
0 5 10 15 20
Frames (millions)
MuloCo
(Continuous)

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Ideas for Future Work

* Remove our reliance on the event detectors

* “Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines”
[Li, Chen, PV, Klassen, Icarte, Mcllraith, Deep RL Workshop 2022]

e “Learning to Follow Instructions in Text-Based Games”
[Tuli, Li, PV, Klassen, Sanner, Mcllraith, Neurips 2022]

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Ideas for Future Work

* Remove our reliance on the event detectors

* “Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines”
[Li, Chen, PV, Klassen, Icarte, Mcllraith, Deep RL Workshop 2022]

e “Learning to Follow Instructions in Text-Based Games”
[Tuli, Li, PV, Klassen, Sanner, Mcllraith, Neurips 2022]

Next Talk!

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Thank
you!

