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Motivation

• A long-standing aspiration of AI is to build agents that can understand and 
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• Task specification:
• Reward function: Hard to specify for each task
• Natural language: Hard to map to a reward for every possible environment
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• Expressiveness: Temporal modalities
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• Theoretical advantages:
• Non-myopia
• Capable of handling non-Markovian rewards

• Empirical advantages:
• Discrete and Continuous domains
• Zero-shot generalization to unseen tasks
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• use_furnace
• on_lava
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This reward 
scheme is non-

Markovian!
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The Idea

Task decomposition
• We use LTL Progression [Bacchus 

Kabanza, 2000] to automatically
simplify the instructions over 
time as parts of the task are 
solved

• Decompose tasks to subtasks that 
can be individually solved

leads to suboptimal policies!
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Architecture

• It’s easy to incorporate these concepts into a standard RL framework (e.g., PPO)

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

!(#|%, ')



Architecture

• It’s easy to incorporate these concepts into a standard RL framework (e.g., PPO)
• Key Results:

• We outperform other approaches that do not use LTL progression or are myopic
• Compositional architecture (GNN) encode formulae better than seq models
• We generalize to unseen (and more complex) instructions than those in training
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Results

Gridworld
(Discrete)

Ours

MuJoCo
(Continuous)

Ours
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Ideas for Future Work

• Remove our reliance on the event detectors
• “Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines”

[Li, Chen, PV, Klassen, Icarte, McIlraith, Deep RL Workshop 2022]

• “Learning to Follow Instructions in Text-Based Games”
[Tuli, Li, PV, Klassen, Sanner, McIlraith, Neurips 2022]
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Next Talk!
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Thank 
you!
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