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Generalizing LTL Instructions for Multi-Task RL
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Motivation

* Along-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

* Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment
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Motivation

A long-standing aspiration of Al is to build agents that can understand and
follow human instructions to solve problems. mccarthy et al., 1960]

Task specification:
* Reward function: Hard to specify for each task
* Natural language: Hard to map to a reward for every possible environment

We express instructions in formal language of linear temporal logic (LTL)
* Expressiveness: Temporal modalities
* Unambiguous semantics: instructions are automatically mapped to reward
* Compositional syntax: can be used to procedurally generate novel tasks

Theoretical advantages:
* Non-myopia
* Capable of handling non-Markovian rewards

Empirical advantages:
e Discrete and Continuous domains
e Zero-shot generalization to unseen tasks
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The Idea
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The Idea

Task: “Get coal or wood, in any order, then used the furnace.”

eventually ((pickup_coal or pickup wood) and (eventually use_ furnace))
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The Idea
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The Idea

Task: “Get coal or wood, in any order, then used the furnace.”

eventually ((pickup_coal or pickup wood) and (eventually use_ furnace))
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Primitive events:
(Propositions)

* pickup_coal
* pickup_wood

* use_furnace
* on_lava

This reward
scheme is non-
Markovian!
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Task decomposition

Decompose tasks to subtasks that

can be individually solved
leads to suboptimal policies!
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We use LTL Progression [Bacchus
Kabanza, 2000] tOo automatically
simplify the instructions over
time as parts of the task are
solved
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Architecture

RL Module

Env Module

* It’s easy to incorporate these concepts into a standard RL framework (e.g., PPO)
* Key Results:

*  We outperform other approaches that do not use LTL progression or are myopic
* Compositional architecture (GNN) encode formulae better than seq models
* We generalize to unseen (and more complex) instructions than those in training
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Ideas for Future Work

* Remove our reliance on the event detectors

*  “Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines”
[Li, Chen, PV, Klassen, Icarte, Mcllraith, Deep RL Workshop 2022]

e “Learning to Follow Instructions in Text-Based Games”
[Tuli, Li, PV, Klassen, Sanner, Mcllraith, Neurips 2022]
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Next Talk!
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Thank
you!



