LTL2Action Generalizing LTL Instructions for Multi-Task RL

Pashootan Vaezipoor

Andrew Li

Rodrigo Toro Icarte

Sheila McIlraith

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of linear temporal logic (LTL)

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of linear temporal logic (LTL)

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of linear temporal logic (LTL)

$$\pi(a|s, \varphi)$$
Instruction (task)

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of *linear temporal logic (LTL)*
 - **Expressiveness:** Temporal modalities

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of linear temporal logic (LTL)
 - Expressiveness: Temporal modalities
 - Unambiguous semantics: instructions are automatically mapped to reward

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of *linear temporal logic (LTL)*
 - **Expressiveness:** Temporal modalities
 - Unambiguous semantics: instructions are automatically mapped to reward
 - Compositional syntax: can be used to procedurally generate novel tasks

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of *linear temporal logic (LTL)*
 - **Expressiveness:** Temporal modalities
 - Unambiguous semantics: instructions are automatically mapped to reward
 - Compositional syntax: can be used to procedurally generate novel tasks
- Theoretical advantages:
 - Non-myopia
 - Capable of handling non-Markovian rewards

- A long-standing aspiration of AI is to build agents that can understand and follow human instructions to solve problems. [McCarthy et al., 1960]
- Task specification:
 - **Reward function:** Hard to specify for each task
 - Natural language: Hard to map to a reward for every possible environment
- We express instructions in formal language of *linear temporal logic (LTL)*
 - Expressiveness: Temporal modalities
 - Unambiguous semantics: instructions are automatically mapped to reward
 - Compositional syntax: can be used to procedurally generate novel tasks
- Theoretical advantages:
 - Non-myopia
 - Capable of handling non-Markovian rewards
- Empirical advantages:
 - Discrete and Continuous domains
 - Zero-shot generalization to unseen tasks

Primitive events:

- (Propositions) • pickup_coal
- pickup_wood
- use_furnaceon_lava

Primitive events:

(Propositions)

- pickup_coal
- pickup_wood
- use_furnaceon_lava

Task: "Get coal or wood, in any order, then used the furnace."

eventually ((pickup_coal or pickup_wood) and (eventually use_furnace))

Primitive events: (Propositions)

- pickup_coal
- · pickup wood
- use_furnace
- on_lava

Task: "Get coal or wood, in any order, then used the furnace."

eventually ((pickup_coal or pickup_wood) and (eventually use_furnace))

Primitive events: (Propositions)

- · pickup_coal
- · pickup_wood
- use_furnace
- on_lava

$$R = \begin{cases} 1 & \text{if } \varphi \text{ is satisfied} \\ -1 & \text{if } \varphi \text{ is falsified} \\ 0 & \text{otherwise} \end{cases}$$

Task: "Get coal or wood, in any order, then used the furnace."

eventually ((pickup_coal or pickup_wood) and (eventually use_furnace))

Primitive events:

- (Propositions)pickup coal
- · pickup_wood
- · use furnace
- on_lava

$$R = \begin{cases} 1 & \text{if } \varphi \text{ is satisfied} \\ -1 & \text{if } \varphi \text{ is falsified} \\ 0 & \text{otherwise} \end{cases}$$

This reward scheme is non-Markovian!

Task decomposition

 Decompose tasks to subtasks that can be individually solved

leads to suboptimal policies!

• We use LTL Progression [Bacchus Kabanza, 2000] to automatically simplify the instructions over time as parts of the task are solved

Architecture

• It's easy to incorporate these concepts into a standard RL framework (e.g., PPO)

Architecture

- It's easy to incorporate these concepts into a standard RL framework (e.g., PPO)
- Key Results:
 - We outperform other approaches that do not use LTL progression or are myopic
 - Compositional architecture (GNN) encode formulae better than seq models
 - We generalize to unseen (and more complex) instructions than those in training

Results

Ideas for Future Work

- Remove our reliance on the *event detectors*
 - "Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines" [Li, Chen, PV, Klassen, Icarte, McIlraith, Deep RL Workshop 2022]
 - "Learning to Follow Instructions in Text-Based Games" [Tuli, Li, PV, Klassen, Sanner, McIlraith, Neurips 2022]

Ideas for Future Work

- Remove our reliance on the *event detectors*
 - "Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines"
 [Li, Chen, PV, Klassen, Icarte, McIlraith, Deep RL Workshop 2022]
 - "Learning to Follow Instructions in Text-Based Games" [Tuli, Li, PV, Klassen, Sanner, McIlraith, Neurips 2022]

Next Talk!

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Thank you!