LTL semantics for Runtime
Verification

Martin Leucker

Based on

Andreas Bauer, Martin Leucker, Christian Schallhart,
Comparing LTL Semantics for Runtime Verification.

J. Log. Comput. 20(3): 651-674 (2010)

https://doi.org/10.1093/logcom/exn075
https://dblp.org/db/journals/logcom/logcom20.html

Runtime Verification

* Partial Verification
* Testing Temporal

@ Assertions

* Test Cases as Input
Synthesis Sequences checked by
d Monitors

Observation Report * De b ugging
System »{ Monitor > g
e Control?

The Ideas

Specification of Traces: LTL

Say yes or no for infinite trace (or lasso)

Finite Trace - FLTL

Say yes or no!

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

Finite Trace — LTLT

Have a strong view or weak view — for of the
logic for the empty word.

Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony Mclsaac, and David Van Campenhout.
Reasoning with temporal logic on truncated paths. In CAV, volume 2725 of LNCS, pages 27-39, 2003.

Finite Trace — Expanding - Impartiality

I

Say yes, no, but also (forms of) may be at
current end!

Finite Trace — Expanding —
Impartiality + Anticipation

Say yes, no,
but also (forms of) may be at curr
Consider all possible extensions!

-inite Trace — Expanding —
mpartiality + Anticipation +

Prediction/Assumptions

All possible trances

Reductions

The Formalities

LTL syntax

pu=true |p |oVelpUep|Xp
pu=false | p|loAp|p Ry | Xp
p 1= TP

Multi-valued Temporal Logics

* Property satisfied, falsified, or indefinite

Definition (Truth Domain)

A Truth Domain is a finite De Morgan Lattice.

Bs: Bs: Bs: T

T T
| |
L ? TP
|
L

4-valued LTL for Finite Executions

Definition (FLTL,; Semantics)

Let ¢, be LTL formulae and let w € X1 be a finite word.
Then the semantics of ¢ with respect to w is inductively

defined as follows:

4 [[w2

[w = X ella = <

<o JIw?
[w = Xela=4,

\

=]4

= 4

if lw| > 1
else
if Jw| >1

else

Monitor construction

* Progression leads to Mealy machine

Anticipation — LTL;

3-valued semantics for LTL over finite words

;

T ifVo e X% :uo =g
uEel =4 L ifVoe€X¥:uo e

] 7 else

Monitor Generation for LTL;

The Construction

Emptiness
LTL BA per State NFA

@/90—>A¢_>f¢—>A¢—>A¢\).

“ﬁgp_>Aﬂ¢_>fﬂ¢—>Aﬁw—>Aﬂso

RV-LTL

TP
P

w W W W

||
- —

=? and [u =
=? and [u =

Monitor Generation for RV-LTL

The Construction

Emptiness
LTL BA per State NFA

/¢_>Aw_>f¢—>A¢—>A¢\).

¥
T e — e fre— e T

In parallel FLTL4/FLTL monitor

Predictive Semantics revisited — LTL;

Definition (Predictive Semantics of LTL)

Let /P be a program and let P be an over-approximation of
P. Let u € ¥X* denote a finite trace. The truth value of u
and an LTL formula ¢ with respect to P, denoted by

[ul=¢]p €Bi ={L,T,? ¢} and defined as follows:

(Tif wey, L(P)AVw e Z¥
ww € L(P) = [uw = ¢]o =T
Lif wey, L(P)AVw € X¢
[u = o]p = S uweﬁ(ﬁ)é[[uw):go]]w:L
79 Jw,w' € T : uw,uw’ € L(P) A
[uw E ¢lo =T Afuw’ E @, =L
i if wéy, L(P)

\

Monitor construction

The procedure for getting [u =5 ¢] for a given ¢ and
over-approximation P

Emptiness

Input ‘ Formula ‘ NBA ’ ‘ PxNBA ’ ‘ per state ‘ NEA H oA ’ o
0, P

Comparison

Boolean laws

Tertium-non-datur laws distributive laws

0V —p = true eV An)=(pVYP)A(pVn)
© A = = false eANpVn)=(pAP)V(pAn)
de Morgan laws de Morgan-X law de Morgan-U/R laws
(V)= oA X =, X—¢p (¢ Uth) =-p R
“(pAY) =V ~(p RY) = - U
TR =@

unwinding laws

p Uy =9V (pAX(p Udv))
e RYy=9vA(pVX(pRY))

Maxims

(1) Existential next

(2) Complementation by negation requires that a negated formula evaluates to the complemented and
different truth value.

(3) Impartiality requires that a finite trace is not evaluated to T (L) if there still exists an infinite continuation
leading to another verdict, and

(4) Anticipation requires that once every infinite continuation of a finite trace leads to the same verdict, then
the finite trace evaluates to this very same verdict.

Results

LTL FLTL LTL™ LTL3 RV-LTL
Domain 2 |lu#0,ue X*(4) 2*(9) 2*(15) lu #0,u € X*(21)
Exitefltial Next yes yes (+)/no (-)| yes yes
(Maxim 1)
Cornp.lementati.on by yes no no yes
Negation (Maxim 2)
%ﬁﬁfﬁl&g)ﬁy no no yes yes
Anticipation no no yes yes
(Maxim 4)
Boolean laws yes (1) yes (6) no (10) |yes (17) yes (23)
Equivalences (Fig. 2) |yes (2) yes (7) yes (12) |yes (18) yes (24)
LTL compliant no (5) no (11) |yes (16) no (25)
Negation normalform |yes (3) yes (8) yes (13) |yes (19) yes (24)
Inductive definition yes yes yes no (14) no (22)

