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Runtime Verification

• Partial Verification
• Testing Temporal 

Assertions
• Test Cases as Input 

Sequences checked by 
Monitors
• Debugging
• Control?

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report
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The Ideas



Specification of Traces: LTL

Say yes or no for infinite trace (or lasso) 



Finite Trace - FLTL

Say yes or no!

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety. 
Springer, New York, 1995.



Finite Trace – LTL∓

Have a strong view or weak view – for of the 
logic for the empty word.

Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and David Van Campenhout. 
Reasoning with temporal logic on truncated paths. In CAV, volume 2725 of LNCS, pages 27–39, 2003. 



Finite Trace – Expanding - Impartiality

Say yes, no, but also (forms of) may be at 
current end!



Finite Trace – Expanding –
Impartiality + Anticipation

Say yes, no, 
but also (forms of) may be at current end,
Consider all possible extensions!



Finite Trace – Expanding –
Impartiality + Anticipation + 
Prediction/Assumptions

All possible trances

Reductions



The Formalities



LTL syntax



Multi-valued Temporal Logics

• Property satisfied, falsified, or indefinite
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Truth Domain

Definition (Truth Domain)

A Truth Domain is a finite De Morgan Lattice.

Examples (Truth Domains)

The following lattices are all Truth Domains:
I B2 = {€, ‹} with ‹ ı € and

€ = ‹ and ‹ = €.
I B3 = {€, ?, ‹} with ‹ ı ? ı € and

€ = ‹, ? = ? and ‹ = €.
I B4 = {€, €p

, ‹p
, ‹} with ‹ ı ‹p ı €p ı € and

€ = ‹, €p = ‹p, ‹p = €p and ‹ = €.
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Example Lattices II

€

‹

B2: €

?

‹

B3: €

€p

‹p

‹

B4:
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let Ï, Â be LTL formulae and let w œ �+ be a finite word.
Then the semantics of Ï with respect to w is inductively
defined as follows:

Jw |= X ÏK4 =
I

Jw2 |= ÏK4 if |w| > 1
‹p else

Jw |= X ÏK4 =
I

Jw2 |= ÏK4 if |w| > 1
€p else



Monitor construction

• Progression leads to Mealy machine



Anticipation – LTL3

LTL for RV [BLS@FSTTCS’06]

Basic idea

! LTL over infinite words is commonly used for specifying correctness

properties

! finite words in RV:

prefixes of infinite, so-far unknown words

! re-use existing semantics

3-valued semantics for LTL over finite words

[u |= ϕ] =



















! if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ %|= ϕ

? else

Martin Leucker ARVI, 16/09/24 33/57



Monitor Generation for LTL3
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The Complete Construction

The Construction

Ï

Ï

LTL

¬ Ï

AÏ

BA

A¬ Ï

FÏ

Emptiness
per State

F¬ Ï

ÂÏ

NFA

Â¬ Ï

ÃÏ

DFA

Ã¬ Ï
MÏ

FSM

LTL3 Evaluation

Ju |= ÏK3 =

Y
__]

__[

€ if u /œ L(NFA¬Ï)
‹ if u /œ L(NFAÏ)
? else



RV-LTL



Monitor Generation for RV-LTL
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The Complete Construction

The Construction

Ï

Ï

LTL

¬ Ï

AÏ

BA

A¬ Ï

FÏ

Emptiness
per State

F¬ Ï

ÂÏ

NFA

Â¬ Ï

ÃÏ

DFA

Ã¬ Ï
MÏ

FSM

LTL3 Evaluation

Ju |= ÏK3 =

Y
__]

__[

€ if u /œ L(NFA¬Ï)
‹ if u /œ L(NFAÏ)
? else

In parallel FLTL4/FLTL monitor



Predictive Semantics revisited – LTL3
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Predictive Semantics

Definition (Predictive Semantics of LTL)

Let P be a program and let P̂ be an over-approximation of
P. Let u œ �ú denote a finite trace. The truth value of u
and an LTL formula Ï with respect to P̂, denoted by
Ju |= ÏKP̂ œ B¿

4 = {‹, €, ?, ¿}, and defined as follows:

Ju |= ÏKP̂ =

Y
_____________]

_____________[

€ if u œÊ L(P̂) · ’w œ �Ê :
uw œ L(P̂) ∆ Juw |= ÏKÊ = €

‹ if u œÊ L(P̂) · ’w œ �Ê :
uw œ L(P̂) ∆ Juw |= ÏKÊ = ‹

? if ÷w, wÕ œ �Ê : uw, uwÕ œ L(P̂) ·
Juw |= ÏKÊ = € · JuwÕ |= ÏKÊ = ‹

¿ if u /œÊ L(P̂)

We use LTLP
4 to indicate LTL with predictive semantics.



Monitor constructionMonitor generation

The procedure for getting [u |=
P̂
ϕ] for a given ϕ and

over-approximation P̂

ϕ, P̂

ϕ Aϕ Bϕ Fϕ B̂ϕ B̃ϕ

¬ϕ A¬ϕ B¬ϕ F¬ϕ B̂¬ϕ B̃¬ϕ

Mϕ

Input Formula NBA P̂×NBA
Emptiness

per state
NFA DFA FSM

Martin Leucker ARVI, 16/09/24 55/57



Comparison



Boolean laws



Maxims

(1) Existential next

(2) Complementation by negation requires that a negated formula evaluates to the complemented and 
different truth value. 

(3) Impartiality requires that a finite trace is not evaluated to ⊤ (⊥) if there still exists an infinite continuation 
leading to another verdict, and 

(4) Anticipation requires that once every infinite continuation of a finite trace leads to the same verdict, then 
the finite trace evaluates to this very same verdict. 



Results


