
LTL semantics for Runtime
Verification

Martin Leucker

Based on

Andreas Bauer, Martin Leucker, Christian Schallhart,
Comparing LTL Semantics for Runtime Verification.
J. Log. Comput. 20(3): 651-674 (2010)

https://doi.org/10.1093/logcom/exn075
https://dblp.org/db/journals/logcom/logcom20.html

Runtime Verification

• Partial Verification
• Testing Temporal

Assertions
• Test Cases as Input

Sequences checked by
Monitors
• Debugging
• Control?

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

The Ideas

Specification of Traces: LTL

Say yes or no for infinite trace (or lasso)

Finite Trace - FLTL

Say yes or no!

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

Finite Trace – LTL∓

Have a strong view or weak view – for of the
logic for the empty word.

Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and David Van Campenhout.
Reasoning with temporal logic on truncated paths. In CAV, volume 2725 of LNCS, pages 27–39, 2003.

Finite Trace – Expanding - Impartiality

Say yes, no, but also (forms of) may be at
current end!

Finite Trace – Expanding –
Impartiality + Anticipation

Say yes, no,
but also (forms of) may be at current end,
Consider all possible extensions!

Finite Trace – Expanding –
Impartiality + Anticipation +
Prediction/Assumptions

All possible trances

Reductions

The Formalities

LTL syntax

Multi-valued Temporal Logics

• Property satisfied, falsified, or indefinite

Software Reliabilty
Methods

Martin Leucker

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

5-20

Truth Domain

Definition (Truth Domain)

A Truth Domain is a finite De Morgan Lattice.

Examples (Truth Domains)

The following lattices are all Truth Domains:
I B2 = {€, ‹} with ‹ ı € and

€ = ‹ and ‹ = €.
I B3 = {€, ?, ‹} with ‹ ı ? ı € and

€ = ‹, ? = ? and ‹ = €.
I B4 = {€, €p

, ‹p
, ‹} with ‹ ı ‹p ı €p ı € and

€ = ‹, €p = ‹p, ‹p = €p and ‹ = €.

Software Reliabilty
Methods

Martin Leucker

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

5-16

Example Lattices II

€

‹

B2: €

?

‹

B3: €

€p

‹p

‹

B4:

4-valued LTL for Finite Executions
Software Reliabilty

Methods

Martin Leucker

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

5-25

FLTL4 Semantics

Definition (FLTL4 Semantics)

Let Ï, Â be LTL formulae and let w œ �+ be a finite word.
Then the semantics of Ï with respect to w is inductively
defined as follows:

Jw |= X ÏK4 =
I

Jw2 |= ÏK4 if |w| > 1
‹p else

Jw |= X ÏK4 =
I

Jw2 |= ÏK4 if |w| > 1
€p else

Monitor construction

• Progression leads to Mealy machine

Anticipation – LTL3

LTL for RV [BLS@FSTTCS’06]

Basic idea

! LTL over infinite words is commonly used for specifying correctness

properties

! finite words in RV:

prefixes of infinite, so-far unknown words

! re-use existing semantics

3-valued semantics for LTL over finite words

[u |= ϕ] =



















! if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ %|= ϕ

? else

Martin Leucker ARVI, 16/09/24 33/57

Monitor Generation for LTL3

Software Reliabilty
Methods

Martin Leucker

Targets & Outline

The Idea
Impartial Anticipation

The Construction

The Construction
From LTL to ABA

Emptiness per State

The Monitor

Analysis
Complexity

Monitorable Properties

Conclusion

8-25

The Complete Construction

The Construction

Ï

Ï

LTL

¬ Ï

AÏ

BA

A¬ Ï

FÏ

Emptiness
per State

F¬ Ï

ÂÏ

NFA

Â¬ Ï

ÃÏ

DFA

Ã¬ Ï
MÏ

FSM

LTL3 Evaluation

Ju |= ÏK3 =

Y
__]

__[

€ if u /œ L(NFA¬Ï)
‹ if u /œ L(NFAÏ)
? else

RV-LTL

Monitor Generation for RV-LTL

Software Reliabilty
Methods

Martin Leucker

Targets & Outline

The Idea
Impartial Anticipation

The Construction

The Construction
From LTL to ABA

Emptiness per State

The Monitor

Analysis
Complexity

Monitorable Properties

Conclusion

8-25

The Complete Construction

The Construction

Ï

Ï

LTL

¬ Ï

AÏ

BA

A¬ Ï

FÏ

Emptiness
per State

F¬ Ï

ÂÏ

NFA

Â¬ Ï

ÃÏ

DFA

Ã¬ Ï
MÏ

FSM

LTL3 Evaluation

Ju |= ÏK3 =

Y
__]

__[

€ if u /œ L(NFA¬Ï)
‹ if u /œ L(NFAÏ)
? else

In parallel FLTL4/FLTL monitor

Predictive Semantics revisited – LTL3
Testing and

Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Predictive
Semantics
Motivation

Definition

Monitoring
LTLP

4

Conclusion

13-9

Predictive Semantics

Definition (Predictive Semantics of LTL)

Let P be a program and let P̂ be an over-approximation of
P. Let u œ �ú denote a finite trace. The truth value of u
and an LTL formula Ï with respect to P̂, denoted by
Ju |= ÏKP̂ œ B¿

4 = {‹, €, ?, ¿}, and defined as follows:

Ju |= ÏKP̂ =

Y
_____________]

_____________[

€ if u œÊ L(P̂) · ’w œ �Ê :
uw œ L(P̂) ∆ Juw |= ÏKÊ = €

‹ if u œÊ L(P̂) · ’w œ �Ê :
uw œ L(P̂) ∆ Juw |= ÏKÊ = ‹

? if ÷w, wÕ œ �Ê : uw, uwÕ œ L(P̂) ·
Juw |= ÏKÊ = € · JuwÕ |= ÏKÊ = ‹

¿ if u /œÊ L(P̂)

We use LTLP
4 to indicate LTL with predictive semantics.

Monitor constructionMonitor generation

The procedure for getting [u |=
P̂
ϕ] for a given ϕ and

over-approximation P̂

ϕ, P̂

ϕ Aϕ Bϕ Fϕ B̂ϕ B̃ϕ

¬ϕ A¬ϕ B¬ϕ F¬ϕ B̂¬ϕ B̃¬ϕ

Mϕ

Input Formula NBA P̂×NBA
Emptiness

per state
NFA DFA FSM

Martin Leucker ARVI, 16/09/24 55/57

Comparison

Boolean laws

Maxims

(1) Existential next

(2) Complementation by negation requires that a negated formula evaluates to the complemented and
different truth value.

(3) Impartiality requires that a finite trace is not evaluated to ⊤ (⊥) if there still exists an infinite continuation
leading to another verdict, and

(4) Anticipation requires that once every infinite continuation of a finite trace leads to the same verdict, then
the finite trace evaluates to this very same verdict.

Results

