
Model Checking Markov Chains against
AFW specifications

Linus Cooper1, Sasha Rubin1, Moshe Vardi2

1 University of Sydney
2 Rice University

AAAI Spring Symposium 2023

1 / 8



Context

Model Checking

– Formal verification of a model against a specification.

– M is the model being verified.

– A is a specification of some behaviour M might exhibit.

– Here, M is a Markov chain and A is an alternating automaton
on finite words (AFW). M generates infinite words, while A
either accepts or rejects finite words.

2 / 8



Problem

How to compare an infinite word against an acceptor of finite
words?

– We say that A accepts an infinite word x if A accepts some
prefix of x .

– We call this the existential semantics.

– Now we can ask: what is the probability that M generates a
word accepted by A?

– Decision problems: is this probability 0? is it 1?

– Another natural definition (acceptance condition is if every
prefix is accepted) turns out to be dual to this one.

3 / 8



Characterization

– P > 0 if and only if some finite string is accepted by A and
can be generated by M.

– P = 1 if and only if for every finite string x generated by M,
there is some continuation xy generated by M accepted by A.

– Intuitively, since it is never possible to end up in a ’dead’ state,
one will eventually reach an accepting state with probability 1.

4 / 8



Previous work

– (Vardi 1985) showed that model checking of NBWs
(nondeterministic Büchi automata, acceptors of infinite
words) is PSPACE-complete.

– (Courcoubetis and Yannakakis 1988) study LTL: also
PSPACE-complete.

– (Bustan, Rubin and Vardi 2004) look at ABWs - also
PSPACE-complete.

– In all of these cases P = 0 and P = 1 have the same
complexity.

5 / 8



This work

– So AFWs - also PSPACE-complete for both problems?

– Idea - convert AFW to equivalent DFW, then use a
straightforward graph traversal

– Removing alternation causes a double-exponential
blowup, for an overall 2EXPTIME (can be improved to
EXPSPACE)

– Idea - convert AFW to equivalent ABW (after accounting for
existential semantics)

– This conversion can require an exponential blowup in
automaton size, producing an EXPSPACE algorithm.

– It turns out that the existential semantics are crucial and the
problem is substantially harder...

6 / 8



Results

– The emptiness problem is PSPACE-complete.

– The universality problem is EXPSPACE-complete.

– Unlike the cases for infinite word specifications where both
problems are PSPACE-complete, our problem has an
asymmetry causing an exponential gap.

– Intuitively, based on the characterization, the emptiness
problem is easier because one only needs to exhibit one string
to show P > 0 instead of reasoning about all strings.

7 / 8



Proof sketches

– Emptiness in PSPACE: use nondeterminism to guess a word
generated by M and accepted by A, showing it is NPSPACE,
then apply Savitch’s theorem

– Emptiness PSPACE-hard: standard AFW emptiness, which is
PSPACE-complete, reduces to probabilistic emptiness.

– Universality in EXPSPACE: convert AFW to ABW or to DFW.

– Universality EXPSPACE-hard: we build an AFW that
recognises invalid runs of an EXPSPACE TM. To do so we
use a specific encoding of runs that marks each tape cell with
its position (in binary). The AFW uses existential choice to
select a time t and the k-th cell of the tape. It then uses
universal choice to validate that its contents are consistent
with the k-th cell at time t + 1. The end of the trace serves
as a ”marker” that the AFW uses to synchronize.

8 / 8


