A Journey from LTLf Satisfiability to Synthesis
 Jianwen Li
 jwli@sei.ecnu.edu.cn
 East China Normal University, Shanghai, China
 March 28, 2023

Linear Temporal Logic

- First introduced to Computer Science by A. Pnueli in 1977
- Formal verification (over infinite traces: LTL)
- AI (over finite traces : LTLf) [IJCAI 13]

Linear Temporal Logic

Syntax for LTL and LTLf:

$$
\varphi:=p|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| X \varphi|\varphi \cup \varphi| \varphi R \varphi|G \varphi| F \varphi
$$

$$
>\neg\left(\varphi_{1} \mathrm{U} \varphi_{2}\right) \equiv \neg \varphi_{1} R \neg \varphi_{2}
$$

$>\neg(X \varphi) \equiv \neg \mathrm{N} \neg \varphi$ (weak Next), for LTLf only
$>\mathrm{F} \varphi \equiv$ true $U \varphi$
$>\mathrm{G} \varphi \equiv$ false $\mathrm{R} \varphi$

Linear Temporal Logic

Semantics for LTL (LTLf)

- Let δ be a trace with $|\delta|=n(n>0)$
- δ F p if $\mathrm{p} \in \delta[0]$
- δ ₹ $\neg \varphi$ if $\delta \not \vDash \varphi$
- $\delta \vDash \varphi_{1} \wedge \varphi_{2}$ if $\delta \vDash \varphi_{1}$ and $\delta \vDash \varphi_{2}$
- δ F $\mathrm{X} \varphi$ if $n>1$ and $\delta_{1} \neq \varphi$
- $\delta \vDash \varphi_{1} U \varphi_{2}$ if $\exists i \geq 0 . \sigma_{i} \vDash \varphi_{2}$ holds, and $\forall 0 \leq j<i . \sigma_{j} \vDash \varphi_{1}$ holds.
- LTL semantics: $n=\infty$
- LTLf semantics: $n<\infty$

LTL vs. LTLf

- X true is always true in LTL, but not in LTLf
- $(\mathrm{a} \wedge \mathrm{X}$ true $) \not \equiv \mathrm{a}$ in LTLf
- $\neg \mathrm{X} \varphi \not \equiv \mathrm{X} \neg \varphi$ in LTLf $(\neg \mathrm{X} \varphi \equiv \mathrm{N} \neg \varphi)$
- $\operatorname{GX} \varphi$ is unsatisfiable in LTLf

LTLf Satisfiability

- Given an LTLf formula φ, is there a non-empty finite trace δ such that $\delta \vDash \varphi$?
- G a is satisfiable
- G X a is unsatisfiable
- GF a \wedge GF \neg a is unsatisfiable

LTLf Synthesis

- Given an LTLf formula φ with the $\langle\mathcal{X}, \mathcal{Y}\rangle$ variable partition, is there a winning strategy $f:\left(2^{\chi}\right)^{*} \rightarrow 2^{Y}$ such that f will eventually produce a satisfiable trace of φ by interacting between the input (X) and output (\mathcal{Y}) variables.
- We consider system-first synthesis
- $\mathrm{G}(\mathrm{a}->\mathrm{b})$ is realizable where $\mathcal{X}=\{\mathrm{a}\}$ and $\mathcal{Y}=\{\mathrm{b}\}$
- $G(a \wedge b)$ is unrealizable where $\mathcal{X}=\{a\}$ and $\mathcal{Y}=\{b\}$

Satisfiability and Realizability (Synthesis)

- Both are fundamental problems for LTLf
- LTLf synthesis becomes popular due to its application to planning
- Satisfiability is easier than realizability in both theory and practice
- Question: Can we solve LTLf realizability via satisfiability?

Satisfiability and Realizability (Synthesis)

- Both are fundamental problems for LTLf
- LTLf synthesis becomes popular due to its application to planning
- Satisfiability is easier than realizability in both theory and practice
- Question: Can we solve LTLf realizability via satisfiability?
Yes!

Syn-SAT: A high-level description of the algorithm

Step 1: Find a satisfiable trace

Step 2: Find a satisfiable run via progression

Step 3: check winning/failure states

Is there $\mathrm{Y} \in 2^{y}$ such that
for every $X \in 2^{x}$,
the transition $\left(s_{n}, \mathrm{X} \cup Y, \mathrm{~s}^{\prime}\right)$
satisfies
either s^{\prime} is winning
or $X \cup Y \mid=s_{n}$?

Step 4: Backtrack

Step 5: Termination

- s_{0} is winning $=>$ realizable
- s_{0} cannot find a satisfiable trace $=>$ unrealizable

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

Example

- $\varphi=\mathrm{Fa} \& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$
$s_{0}=\varphi$
$s_{1}=\mathrm{G} \mathrm{b} \mid \mathrm{FG} \mathrm{b}$
$\left.s_{2}=\mathrm{Fa} \mathrm{\&} \mathrm{(G} \mathrm{~b} \mid \mathrm{FG} \mathrm{b}\right)$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{G} \mathrm{b}$

find a satisfiable trace and run.

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$
$s_{0}=\varphi$
$s_{1}=\mathrm{G} \mathrm{b} \mid \mathrm{FG}$ b
$s_{2}=\mathrm{Fa} \mathrm{\&}(\mathrm{G} \mathrm{b} \mid \mathrm{FG} \mathrm{b})$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{G} \mathrm{b}$

from s_{0} and fix b , find another satisfiable trace and run.

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$
$s_{0}=\varphi$
$s_{1}=\mathrm{G} \mathrm{b} \mid \mathrm{FG}$ b
$\left.s_{2}=\mathrm{Fa} \mathrm{\&} \mathrm{(G} \mathrm{~b} \mid \mathrm{FG} \mathrm{b}\right)$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{G} \mathrm{b}$

Recursively check whether s_{2} is winning.

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$
$s_{0}=\varphi$
$s_{1}=\mathrm{G} \mathrm{b} \mid \mathrm{FG}$ b
$s_{2}=\mathrm{Fa} \mathrm{\&}(\mathrm{G} \mathrm{b} \mid \mathrm{FG} \mathrm{b})$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{G} \mathrm{b}$

from s_{2} and fix b , find another satisfiable trace and run.

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG} \mathrm{b}$ and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$
$s_{0}=\varphi$
$s_{1}=\mathrm{G} \mathrm{b} \mid \mathrm{FG}$ b
$\left.s_{2}=\mathrm{Fa} \mathrm{\&} \mathrm{(G} \mathrm{~b} \mid \mathrm{FG} \mathrm{b}\right)$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{G} \mathrm{b}$

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG} \mathrm{b}$ and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

$$
s_{0}=\varphi
$$

$s_{1}=\mathrm{Gb} \mid \mathrm{FG} \mathrm{b}$
$s_{2}=\mathrm{Fa} \&(\mathrm{~Gb} \mid \mathrm{FG} \mathrm{b})$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{Gb}$

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG} \mathrm{b}$ and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$
$s_{0}=\varphi$
$s_{1}=\mathrm{G} \mathrm{b} \mid \mathrm{FG}$ b
$\left.s_{2}=\mathrm{Fa} \mathrm{\&} \mathrm{(G} \mathrm{~b} \mid \mathrm{FG} \mathrm{b}\right)$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{G} \mathrm{b}$

from s_{2} and block b , find another satisfiable trace and run.

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

$$
s_{0}=\varphi
$$

$s_{1}=\mathrm{Gb} \mid \mathrm{FG} \mathrm{b}$
$s_{2}=\mathrm{Fa} \&(\mathrm{~Gb} \mid \mathrm{FG} \mathrm{b})$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{Gb}$

from s_{2} and block b , find another satisfiable trace and run.
s_{3} is winning, so backtrack to s_{2}.

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG} \mathrm{b}$ and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

$$
\begin{aligned}
& s_{0}=\varphi \\
& s_{1}=\mathrm{G} \mathrm{~b} \mid \mathrm{FG} \mathrm{~b} \\
& s_{2}=\mathrm{Fa} \&(\mathrm{G} \mathrm{~b} \mid \mathrm{FG} \mathrm{~b}) \\
& s_{3}=\mathrm{FG} \mathrm{~b} \\
& s_{4}=\mathrm{G} \mathrm{~b}
\end{aligned}
$$

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG} \mathrm{b}$ and $\mathcal{X}=\{\mathrm{a}\}, \quad \mathcal{Y}=\{\mathrm{b}\}$

$$
s_{0}=\varphi
$$

$s_{1}=\mathrm{G} \mathrm{b} \mid \mathrm{FG}$ b
$s_{2}=\mathrm{Fa} \&(\mathrm{~Gb} \mid \mathrm{FG} \mathrm{b})$
$s_{3}=\mathrm{FG} \mathrm{b}$
$s_{4}=\mathrm{Gb}$

Example

- $\varphi=\mathrm{Fa} \& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

Example

- $\varphi=\mathrm{F}$ a $\& \mathrm{FG}$ b and $\mathcal{X}=\{\mathrm{a}\}, \mathcal{Y}=\{\mathrm{b}\}$

$$
\begin{aligned}
& s_{0}=\varphi \\
& s_{1}=\mathrm{G} \mathrm{~b} \mid \mathrm{FG} \mathrm{~b} \\
& s_{2}=\mathrm{Fa} \&(\mathrm{G} \mathrm{~b} \mid \mathrm{FG} \mathrm{~b}) \\
& s_{3}=\mathrm{FG} \mathrm{~b} \\
& s_{4}=\mathrm{G} \mathrm{~b}
\end{aligned}
$$

From s_{0} and select b, we cannot find another satisfiable trace not running across s_{2}.

The same happens when starting from s_{0} and select !b.

s_{0} is a failure state.
φ is unrealizable!

Experimental Set-up

- SVS: implemented based on aaltaf [AAAI 2019]
- Cythia: the most recent LTLf synthesis tool [IJICAI 2022]
- OLFS: Our previous LTLf synthesis tool [AAAI 2021]
- Benchmarks: 1494 instances in total, including 40 Pattern instances, 54 Two-player-Games instances and 1400 Random instances

Results

Table 1: Summary of results: pairwise comparison

Comparing				
	Uniquely solved by	Uniquely solved by	Solved faster by	folved faster by
	SVS	'other'	SVS	'other'
SVS/ OLFS	246	12	39	134
SVS/ Cynthia	136	32	65	219

Table 2: Summary of results

Tool	Realizable		Unrealizable	
	Solved	Uniquely solved	Solved	Uniquely solved
SVS	189	11	232	107
OLFS	89	1	98	3
Cynthia	189	9	128	15

Summary

- We present a new LTLf synthesis approach by using satisfiability checking
- The experimental results show the promise of the new approach
- In future, we will explore more effective heuristics to continually improve the overall performance

Q\&A

