A Journey from LTLf Satisfiability to Synthesis

Jianwen Li

jwli@sei.ecnu.edu.cn

East China Normal University, Shanghai, China March 28, 2023

Linear Temporal Logic

- First introduced to Computer Science by A. Pnueli in 1977
- Formal verification (over infinite traces: LTL)
- AI (over finite traces : LTLf) [IJCAI 13]

Linear Temporal Logic

Syntax for LTL and LTLf:

$$\varphi \coloneqq p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi \cup \varphi \mid \varphi R \varphi \mid G\varphi \mid F\varphi$$

$$\neg (\varphi_1 \cup \varphi_2) \equiv \neg \varphi_1 R \neg \varphi_2 \neg (X\varphi) \equiv \neg N \neg \varphi \text{ (weak Next), for LTLf only} \geq F\varphi \equiv true \cup \varphi \geq G\varphi \equiv false R \varphi$$

Linear Temporal Logic

Semantics for LTL (LTLf)

- Let δ be a trace with $|\delta| = n \ (n > 0)$
 - $\delta \models p \text{ if } p \in \delta[0]$
 - $\delta \vDash \neg \varphi$ if $\delta \nvDash \varphi$
 - $\delta \models \varphi_1 \land \varphi_2$ if $\delta \models \varphi_1$ and $\delta \models \varphi_2$
 - $\delta \models X\varphi$ if n > 1 and $\delta_1 \not\models \varphi$
 - $\delta \models \varphi_1 \cup \varphi_2$ if $\exists i \ge 0. \sigma_i \models \varphi_2$ holds, and $\forall 0 \le j < i. \sigma_j \models \varphi_1$ holds.
- LTL semantics: $n = \infty$
- LTLf semantics: $n < \infty$

LTL vs. LTLf

- X true is always true in LTL, but not in LTLf
- (a \land X true) $\not\equiv$ a in LTLf

•
$$\neg X\varphi \not\equiv X \neg \varphi$$
 in LTLf ($\neg X\varphi \equiv N \neg \varphi$)

• $GX\varphi$ is unsatisfiable in LTLf

LTLf Satisfiability

• Given an LTLf formula φ , is there a non-empty finite trace δ such that $\delta \models \varphi$?

- G a is satisfiable
- G X a is unsatisfiable
- GF a \land GF \neg a is unsatisfiable

LTLf Synthesis

- Given an LTLf formula φ with the $\langle \mathcal{X}, \mathcal{Y} \rangle$ variable partition, is there a winning strategy $f: (2^{\chi})^* \to 2^{Y}$ such that f will eventually produce a satisfiable trace of φ by interacting between the input (\mathcal{X}) and output (\mathcal{Y}) variables.
- We consider system-first synthesis
- G (a -> b) is realizable where $\mathcal{X} = \{a\}$ and $\mathcal{Y} = \{b\}$
- G (a \land b) is unrealizable where $\mathcal{X} = \{a\}$ and $\mathcal{Y} = \{b\}$

Satisfiability and Realizability (Synthesis)

- Both are fundamental problems for LTLf
- LTLf synthesis becomes popular due to its application to planning
- Satisfiability is easier than realizability in both theory and practice
- Question: Can we solve LTLf realizability via satisfiability?

Satisfiability and Realizability (Synthesis)

- Both are fundamental problems for LTLf
- LTLf synthesis becomes popular due to its application to planning
- Satisfiability is easier than realizability in both theory and practice
- Question: Can we solve LTLf realizability via satisfiability?

Syn-SAT: A high-level description of the algorithm

Step 1: Find a satisfiable trace

Step 2: Find a satisfiable run via progression *S*₀ ω_0 ω_0 S_1 ω_1 ω_1 S_2 S_n ω_n accepting ω_n transition

Step 5: Termination

• s_0 is winning => realizable

• s_0 cannot find a satisfiable trace => unrealizable

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$$

 $s_0 = \varphi$
 $s_1 = G b | FG b$
 $s_2 = Fa \& (G b | FG b)$

find a satisfiable trace and run.

 $s_3 = FG b$

 $s_4 = G b$

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \ \mathcal{Y} = \{b\}$$

 $s_0 = \varphi$ $s_1 = G b | FG b$

$$s_2$$
=Fa & (G b | FG b)

 $s_3 = FG b$

select b and check whether s_0 can be winning.

 $s_4 = G b$

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

 $s_0 = \varphi$

 $s_1 = G b | FG b$

 s_2 =Fa & (G b | FG b)

 $s_3 = FG b$

 $s_4 = G b$

from s_0 and fix b, find another satisfiable trace and run.

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

 $s_0 = \varphi$

 $s_1 = G b | FG b$

 s_2 =Fa & (G b | FG b)

 $s_3 = FG b$

 $s_4 = G b$

Recursively check whether s_2 is winning.

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

 $s_0 = \varphi$

 $s_1 = G b | FG b$

 s_2 =Fa & (G b | FG b)

 $s_3 = FG b$

 $s_4 = G b$

from s_2 and fix b, find another satisfiable trace and run.

• $\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$ *S*₀ $s_0 = \varphi$ b from s_2 and fix b, find another $s_1 = G b | FG b$!a a satisfiable trace and run. *s*₂=Fa & (G b | FG b) S_2 *S*₁ $s_3 = FG b$ b !a a $s_4 = G b$ *S*₂ S_1

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

*S*₀

b

!a

*S*₂

*S*₃

b

!b&a

 $s_0 = \varphi$ s_1 =G b | FG b a *s*₂=Fa & (G b | FG b) *s*₁ $s_3 = FG b$ $s_4 = G b$ S_4

from s_2 and block b, find another satisfiable trace and run.

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \quad \mathcal{Y} = \{b\}$$

 $s_0 = \varphi$
 $s_1 = G b | FG b$
 $s_2 = Fa \& (G b | FG b)$
 $s_3 = FG b$
 $s_4 = G b$
• $\varphi = F a \& FG b$
 $s_1 = G b$
 $s_1 = G b$
 $s_1 = G b$
 $s_1 = G b$
 $s_2 = FG b$
 $s_3 = FG b$
 $s_4 = G b$
 $s_4 = G b$

from s_2 and block b, find another satisfiable trace and run.

 s_3 is winning, so backtrack to s_2 .

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

 $s_0 = \varphi$ $s_1 = G b | FG b$ $s_2 = Fa \& (G b | FG b)$

 $s_3 = FG b$

 s_0 b a s_1

From s_0 and select b, we cannot find another satisfiable trace not running across s_2 .

The same happens when starting from s_0 and select !b.

 $s_4 = G b$

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

*S*₀

a

*s*₁

b

 $s_0 = \varphi$ $s_1 = G b | FG b$ $s_2 = Fa \& (G b | FG b)$

 $s_3 = FG b$

 $s_4 = G b$

From s_0 and select b, we cannot find another satisfiable trace not running across s_2 .

The same happens when starting from s_0 and select !b. s_0 is a failure state.

•
$$\varphi = F a \& FG b and \mathcal{X} = \{a\}, \mathcal{Y} = \{b\}$$

*S*₀

a

*s*₁

b

 $s_0 = \varphi$ $s_1 = G b | FG b$ $s_2 = Fa \& (G b | FG b)$

 $s_3 = FG b$

 $s_4 = G b$

From s_0 and select b, we cannot find another satisfiable trace not running across s_2 .

The same happens when starting from s_0 and select !b. $\int \\ s_0$ is a failure state. φ is unrealizable!

Experimental Set-up

- SVS: implemented based on aaltaf [AAAI 2019]
- Cythia: the most recent LTLf synthesis tool [IJICAI 2022]
- OLFS: Our previous LTLf synthesis tool [AAAI 2021]
- Benchmarks: 1494 instances in total, including 40 Pattern instances, 54 Two-player-Games instances and 1400 Random instances

Results

Comparing	Uniquely	Uniquely	Solved	Solved
	solved by	solved by	faster by	faster by
	SVS	'other'	SVS	'other'
SVS/ OLFS	246	12	39	134
SVS/ Cynthia	136	32	65	219

Table 1: Summary of results: pairwise comparison

Table 2: Summary of results

Tool	Realizable		Unrealizable	
	Solved	Uniquely solved	Solved	Uniquely solved
SVS	189	11	232	107
OLFS	89	1	98	3
Cynthia	189	9	128	15

Summary

- We present a new LTLf synthesis approach by using satisfiability checking
- The experimental results show the promise of the new approach
- In future, we will explore more effective heuristics to continually improve the overall performance

