LTL_f Best-Effort Synthesis in Nondeterministic Planning Domains

Gianmarco Parretti parretti@diag.uniroma1.it

(joint work with Giuseppe De Giacomo and Shufang Zhu)

Sapienza University of Rome

March 2023

Background

► Game-theoretic approach to planning for goals in Linear Temporal Logic on Finite Traces (LTL_f)

Reactive synthesis is a general form of planning that finds a strategy to realize a temporal goal, i.e., a winning strategy

Best-effort synthesis is an extension of reactive synthesis that finds a strategy that ensures that the agent does its best to achieve the goal, i.e., a best-effort strategy

Comparing Synthesis Approaches to Planning

	Reactive Synthesis	Best-Effort Synthesis
Strategy Existence	Realizable tasks	Always
Environment	Adversarial	Any
Goal Completion	Realizable tasks	Best-effort ^[1]
Goal Complexity	2EXPTIME-complete	2EXPTIME-complete
Domain Complexity	EXPTIME-complete	EXPTIME -complete

^[1] Ensures goal for realizable tasks; else, ensures goal for a maximal set of environment behaviors.

Comparing Synthesis Approaches to Planning

	Reactive Synthesis	Best-Effort Synthesis
Strategy Existence	Realizable tasks	Always
Environment	Adversarial	Any
Goal Completion	Realizable tasks	Best-effort ^[1]
Goal Complexity	2EXPTIME-complete	2EXPTIME-complete
Domain Complexity	EXPTIME-complete	EXPTIME -complete

▶ Best-effort synthesis, suitable in non-strictly adversarial dmains, e.g., FOND

^[1] Ensures goal for realizable tasks; else, ensures goal for a maximal set of environment behaviors.

▶ A planning domain is defined as $\mathcal{D} = (2^{\mathcal{F}}, s_0, Act, React, \alpha, \beta, \delta)$

- ▶ A planning domain is defined as $\mathcal{D} = (2^{\mathcal{F}}, s_0, Act, React, \alpha, \beta, \delta)$
 - ▶ Fluents: \mathcal{F} ; State Space: $2^{\mathcal{F}}$; Size of \mathcal{D} : $|\mathcal{F}|$
 - ▶ Initial state: $s_0 \in 2^{\mathcal{F}}$

- ▶ A planning domain is defined as $\mathcal{D} = (2^{\mathcal{F}}, s_0, Act, React, \alpha, \beta, \delta)$
 - ▶ Fluents: \mathcal{F} ; State Space: $2^{\mathcal{F}}$; Size of \mathcal{D} : $|\mathcal{F}|$
 - ▶ Initial state: $s_0 \in 2^{\mathcal{F}}$
 - ► Agent actions: Act
 - ► Environment Reactions: React

- ▶ A planning domain is defined as $\mathcal{D} = (2^{\mathcal{F}}, s_0, Act, React, \alpha, \beta, \delta)$
 - ► Fluents: F; State Space: 2F; Size of D: |F|
 - ▶ Initial state: $s_0 \in 2^{\mathcal{F}}$
 - ► Agent actions: Act
 - Environment Reactions: React
 - ▶ Agent actions preconditions: $\alpha: 2^{\mathcal{F}} \rightarrow 2^{Act}$
 - **Environment reaction preconditions:** $\beta: 2^{\mathcal{F}} \times Act \rightarrow 2^{React}$

- ▶ A planning domain is defined as $\mathcal{D} = (2^{\mathcal{F}}, s_0, Act, React, \alpha, \beta, \delta)$
 - ▶ Fluents: \mathcal{F} ; State Space: $2^{\mathcal{F}}$; Size of \mathcal{D} : $|\mathcal{F}|$
 - ▶ Initial state: $s_0 \in 2^{\mathcal{F}}$
 - Agent actions: Act
 - Environment Reactions: React
 - ▶ Agent actions preconditions: $\alpha: 2^{\mathcal{F}} \rightarrow 2^{Act}$
 - ▶ Environment reaction preconditions: $\beta: 2^{\mathcal{F}} \times Act \rightarrow 2^{React}$
 - ▶ Transition function: $\delta: 2^{\mathcal{F}} \times Act \times React \mapsto 2^{\mathcal{F}}$;
 - $\delta(s, a, r)$ defined only if $a \in \alpha(s)$ and $r \in \beta(s, a)$

Best-Effort Synthesis in Nondeterministic Planning Domains

- ▶ Agent strategy: $\sigma: (2^{\mathcal{F}})^+ \to Act$
- **Environment strategy:** $\gamma : Act^+ \rightarrow React$

^[2] Dominance is defined only for strategies always satisfying action (resp. reaction) preconditions

Best-Effort Synthesis in Nondeterministic Planning Domains

- ▶ Agent strategy: $\sigma: (2^{\mathcal{F}})^+ \to Act$
- **Environment strategy:** $\gamma : Act^+ \rightarrow React$

Dominance^[2]

Agent strategy σ_1 dominates σ_2 for goal φ in domain \mathcal{D} , written $\sigma_1 \geq_{\varphi|\mathcal{D}} \sigma_2$, if for every environment strategy γ , $\operatorname{Play}(\sigma_2, \gamma) \models_{\mathcal{D}} \varphi$ implies $\operatorname{Play}(\sigma_1, \gamma) \models_{\mathcal{D}} \varphi$. σ_1 strictly dominates σ_2 , written $\sigma_1 >_{\varphi|\mathcal{D}} \sigma_2$, if $\sigma_1 \geq_{\varphi|\mathcal{D}} \sigma_2$ and $\sigma_2 \not\geq_{\varphi|\mathcal{D}} \sigma_1$

^[2] Dominance is defined only for strategies always satisfying action (resp. reaction) preconditions Gianmarco Parretti | LTL, Best-Effort Synthesis in Nondeterministic Planning Domains

Best-Effort Synthesis in Nondeterministic Planning Domains

- ▶ Agent strategy: $\sigma: (2^{\mathcal{F}})^+ \to Act$
- **Environment strategy:** $\gamma : Act^+ \rightarrow React$

Dominance^[2]

Agent strategy σ_1 dominates σ_2 for goal φ in domain \mathcal{D} , written $\sigma_1 \geq_{\varphi|\mathcal{D}} \sigma_2$, if for every environment strategy γ , $\operatorname{Play}(\sigma_2, \gamma) \models_{\mathcal{D}} \varphi$ implies $\operatorname{Play}(\sigma_1, \gamma) \models_{\mathcal{D}} \varphi$. σ_1 strictly dominates σ_2 , written $\sigma_1 >_{\varphi|\mathcal{D}} \sigma_2$, if $\sigma_1 \geq_{\varphi|\mathcal{D}} \sigma_2$ and $\sigma_2 \not\geq_{\varphi|\mathcal{D}} \sigma_1$

LTLf Best-Effort Synthesis in Nondeterministic Planning Domains

Given: Planning domain \mathcal{D} and LTL_f agent goal φ over \mathcal{F}

Obtain: A best-effort strategy, i.e., σ for which there is no σ' s.t. $\sigma' >_{\omega \mid \mathcal{D}} \sigma$

^[2] Dominance is defined only for strategies always satisfying action (resp. reaction) preconditions Gianmarco Parretti | LTL, Best-Effort Synthesis in Nondeterministic Planning Domains

Synthesis Technique [1]

▶ Synthesis technique based on solving simultaneously suitable DFA games

Synthesis Technique [1]

- Synthesis technique based on solving simultaneously suitable DFA games
- ▶ 1a. Transform planning domain D into transition system

$$\mathcal{D}^{+} = (\textit{Act} \times \textit{React}, 2^{\mathcal{F}} \cup \{s_{\textit{err}}^{\textit{ag}}, s_{\textit{err}}^{\textit{env}}\}, s_0, \delta')$$

with:

- ▶ Agent and environment error states s_{err}^{ag} and s_{err}^{env} .
- ► Transition function δ' s.t. $\delta'(s, a, r) = s$ if $s \in \{s_{err}^{ag}, s_{err}^{env}\}$, and

$$\delta'(s,a,r) = \begin{cases} \delta(s,a,r) & \text{if } a \in \alpha(s) \text{ and } r \in \beta(s,a) \\ s_{\textit{err}}^{\textit{ag}} & \text{if } a \notin \alpha(s) \\ s_{\textit{err}}^{\textit{env}} & \text{if } a \in \alpha(s) \text{ and } r \notin \beta(s,a) \end{cases}$$

Synthesis Technique [1]

- Synthesis technique based on solving simultaneously suitable DFA games
- **1a.** Transform planning domain \mathcal{D} into transition system

$$\mathcal{D}^{+} = (\textit{Act} \times \textit{React}, 2^{\mathcal{F}} \cup \{s_{\textit{err}}^{\textit{ag}}, s_{\textit{err}}^{\textit{env}}\}, s_0, \delta')$$

with:

- ▶ Agent and environment error states s_{err}^{ag} and s_{err}^{env} . ▶ **Transition function** δ' s.t. $\delta'(s, a, r) = s$ if $s \in \{s_{err}^{ag}, s_{err}^{env}\}$, and

$$\delta'(s, a, r) = \begin{cases} \delta(s, a, r) & \text{if } a \in \alpha(s) \text{ and } r \in \beta(s, a) \\ s_{err}^{ag} & \text{if } a \notin \alpha(s) \\ s_{err}^{env} & \text{if } a \in \alpha(s) \text{ and } r \notin \beta(s, a) \end{cases}$$

▶ **1b.** Transform **agent goal** φ into DFA $\mathcal{A}_{\varphi} = (\mathcal{T}_{\varphi}, Reach(R_{\varphi}))$ with $\mathcal{T}_{\varphi} = (2^{\mathcal{F}}, Q, q_0, \varrho)$ and $R_{\varphi} \subseteq Q$. Note $\varrho : Q \times 2^{\mathcal{F}} \to Q$

Synthesis Technique [2]

2. Compose \mathcal{D}^+ and \mathcal{T}_{φ} into

$$\mathcal{G} = (\textit{Act} \times \textit{React}, (2^{\mathcal{F}} \cup \{s_{\textit{err}}^{\textit{ag}}, s_{\textit{err}}^{\textit{env}}\}) \times \textit{Q}, (s_0, \varrho(q_0, s_0)), \partial)$$

with **transition function** ∂ :

$$\partial((s,q),a,r) = egin{cases} (s',arrho(q,s')) & ext{if } s'
otin \{s^{ag}_{err},s^{env}_{err}\} \ (s^{ag}_{err},q) & ext{if } s' = s^{ag}_{err} \ (s^{env}_{err},q) & ext{if } s' = s^{env}_{err} \end{cases}$$

where $s' = \delta'(s, a, r)$

Synthesis Technique [2]

▶ 2. Compose \mathcal{D}^+ and \mathcal{T}_{φ} into $\mathcal{G} = (Act \times React, (2^{\mathcal{F}} \cup \{s_{err}^{ag}, s_{err}^{env}\}) \times Q, (s_0, \varrho(q_0, s_0)), \partial)$ with transition function ∂ :

$$\partial((s,q),a,r) = egin{cases} (s',arrho(q,s')) & ext{if } s'
otin \{s^{ag}_{err},s^{env}_{err}\} \ (s^{ag}_{err},q) & ext{if } s' = s^{ag}_{err} \ (s^{env}_{err},q) & ext{if } s' = s^{env}_{err} \end{cases}$$

where $s' = \delta'(s, a, r)$

▶ 3. Compute a **positional winning strategy** in game κ_{adv} in game $(\mathcal{G}, Reach(\neg S_{err}^{ag} \cap (S_{err}^{env} \cup R_{\varphi}')))$. Let W_{adv} be the **winning region**

Synthesis Technique [2]

▶ 2. Compose \mathcal{D}^+ and \mathcal{T}_{φ} into $\mathcal{G} = (Act \times React, (2^{\mathcal{F}} \cup \{s_{err}^{ag}, s_{err}^{env}\}) \times Q, (s_0, \varrho(q_0, s_0)), \partial)$ with transition function ∂ :

$$\partial((s,q),a,r) = egin{cases} (s',arrho(q,s')) & ext{if } s'
otin \{s^{ag}_{err},s^{env}_{err}\} \ (s^{ag}_{err},q) & ext{if } s' = s^{ag}_{err} \ (s^{env}_{err},q) & ext{if } s' = s^{env}_{err} \end{cases}$$

where $s' = \delta'(s, a, r)$

- ▶ 3. Compute a **positional winning strategy** in game κ_{adv} in game $(\mathcal{G}, Reach(\neg S_{err}^{ag} \cap (S_{err}^{env} \cup R_{\varphi}')))$. Let W_{adv} be the **winning region**
- ▶ 4. Compute a positional cooperatively winning strategy κ_{coop} in game $(\mathcal{G}, Reach(\neg S_{err}^{ag} \cap \neg S_{err}^{env} \cap R_{\varphi}'))$. Let W_{coop} be the winning region

Synthesis Technique [3]

5. Return the agent strategy σ **induced** by κ constructed as follows:

$$\kappa(s,q) = egin{cases} \kappa_{ ext{adv}}(s,q) & ext{if } (s,q) \in W_{ ext{adv}} \ \kappa_{ ext{coop}}(s,q) & ext{if } (s,q) \in W_{ ext{coop}}/W_{ ext{adv}} \ ext{any } a \in lpha(s) & ext{if } (s,q)
otin W_{ ext{coop}} \cup W_{ ext{adv}} \end{cases}$$

Synthesis Technique [3]

5. Return the agent strategy σ **induced** by κ constructed as follows:

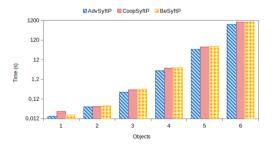
$$\kappa(s,q) = egin{cases} \kappa_{ ext{adv}}(s,q) & ext{if } (s,q) \in W_{ ext{adv}} \ \kappa_{ ext{coop}}(s,q) & ext{if } (s,q) \in W_{ ext{coop}}/W_{ ext{adv}} \ ext{any } a \in lpha(s) & ext{if } (s,q)
otin W_{ ext{coop}} \cup W_{ ext{adv}} \end{cases}$$

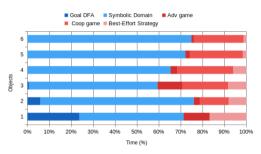
Correctness

- ▶ Thm 1. There exists a strong plan for φ in \mathcal{D} iff there exists a winning strategy for $(\mathcal{G}, Reach(\neg S_{err}^{ag} \cap (S_{err}^{env} \cup R_{\varphi}'))$
- ▶ Thm 2. There exists a cooperative plan for φ in \mathcal{D} iff there exists a cooperatively winning strategy for $(\mathcal{G}, Reach(\neg S_{err}^{ag} \cap \neg S_{err}^{env} \cap R_{\varphi}'))$

Implementation and Empirical Evaluation

- Symbolic implementations: BeSyftP, AdvSyftP, CoopSyftP
- ► Empirical evaluation on scalable pick-and-place benchmarks





(a) Comparison of BeSyftP, AdvSyftP and CoopSyftP

(b) Relative time cost of major operations in *BeSyftP*

Conclusion and Future Works

- Conclusion
 - Best-effort synthesis is suitable to address unrealizability of agent tasks
 - Brings only a minimal overhead wrt computing winning strategies

- Future Works
 - Empirical validation
 - Extension to multiple planning domains and agent goal specifications