
KnoBAB
Making Logic Fast

Giacomo Bergami

Newcastle University, England, United Kingdom

LTf@AAAI-SSS, 29th of March, 2023

Who Are We?

Assistant Prof. (Lecturer)

Dr Giacomo Bergami
[Ãa:komo be:rgami]

PhD Student

Mr Samuel Appleby

Full Professor

Prof Graham Morgan

References

Samuel Appleby, Giacomo Bergami, and Graham Morgan.
Running temporal logical queries on the relational model.
In IDEAS’22, pages 134–143. ACM, 2022.

Samuel Appleby, Giacomo Bergami, and Graham Morgan.
Quickening data-aware conformance checking through temporal algebras.
In Information (Switzerland), volume 14, page 60, 2023.

Samuel Appleby, Giacomo Bergami, and Graham Morgan.
Enhancing declarative temporal model mining in relational databases: A
preliminary study.
In IDEAS’23 [In Press], 2023.

And now. . . (1971)

And now. . . (1971)

What is KnoBAB? (1/2)

Bridging the gap between theoretical research and practical use case
scenarios.
To the best of our knowledge, current approaches in the field have at least one
of the following shortcomings:

1 Do not reap big data algorithms for carrying out computations efficiently
2 Most of the time, the users are forced to “reduce” a data-aware domain to a

dataless one to carry out business process mining operations (e.g., trace repairs
or alignments).

3 KnoBAB shows that it is possible to import a lot of good practices from database
field to the benefit of a larger community.

4 Either assume one fixed declarative language (Process Query Language), or are
mainly GUI-driven (ProM, RuM).

What is KnoBAB? (2/2)

In order to perform optimizations, we performed the following assumptions:
We are not interested in empty traces, as they have no events!
Traces’ payloads can be represented as a distinctive event (trace payload)
appearing at the beginning of the trace.
Differently from the current standard, keys are not duck typed, but are
associated to only one specific data-type!
Boolean and Integer representation are mapped into double precision floating
points.
For each database, we consider a minimum and maximum possible string
value length.

What is xtLTLf?

Despite LTLf describes a way to
calculate the satisfiability of a trace
starting from its beginning and
providing temporal quantification
on specific events, any relational
algebra works in the opposite way,
from the data being accessed.
⇒ next (⃝φ, Xφ) must be evaluated

from φ towards the preceding
event, if any.

Walking on the footsteps of Declare,
we might assume to have activation
and target condition to be tested.
Differently from LTLf, we also need
to explicitly express data correlation
conditions.

“Logic is the anatomy of thought”
John Locke (1632-1704)

Edgar Codd (1923-2003)

I. Column-Store Data Representation

Log

Trace Payload { loc_po = "LN", p_id = "001A" }

Referral { CA_15-3 = 69 }

Mastectomy { CA_15-3 = 69, biopsy = true }

FollowUp { CA_15-3 = 10 }

Trace Payload { loc_po = "NE", p_id = "002A" }

Referral { CA_15-3 = 20 }

Trace Payload { loc_po = "YO", p_id = "003A" }

Referral { CA_15-3 = 61 }

Lumpectomy { CA_15-3 = 61, biopsy = true }

FollowUp { CA_15-3 = 55 }

Counting Table

ActivityId Trace Count

__trace__payload 1 1

__trace__payload 2 1

__trace__payload 3 1

Referral 1 1

Referral 2 1

Referral 3 1

Mastectomy 1 1

Mastectomy 2 0

Mastectomy 3 0

FollowUp 1 1

FollowUp 2 0

FollowUp 3 1

Lumpectomy 1 0

Lumpectomy 2 0

Lumpectomy 3 1

Activity Table

ID ActivityId Trace Event Prev Next

#1 __trace__payload 1 1 NULL #4

#2 __trace__payload 2 1 NULL #5

#3 __trace__payload 3 1 NULL #6

#4 Referral 1 2 #1 #7

#5 Referral 2 2 #2 NULL

#6 Referral 3 2 #3 #10

#7 Mastectomy 1 3 #4 #8

#8 FollowUp 1 4 #7 NULL

#9 FollowUp 3 4 #10 NULL

#10 Lumpectomy 3 3 #6 #9

Attribute Table [CA15-3]

ActivityId Value Offset

Referral 20 #5

Referral 61 #6

Referral 69 #4

Mastectomy 69 #7

FollowUp 10 #8

FollowUp 55 #9

Lumpectomy 61 #10

Attribute Table [location]

ActivityId Value Offset

__trace_payload "LN" #1

__trace_payload "NE" #2

__trace_payload "YO" #3

Data Loading + Indexing

INPUT DATA (HUMAN READABLE) COLUMN-BASED Relational Database

Attribute Table [patient]

ActivityId Value Offset

__trace_payload "001A" #1

__trace_payload "002A" #2

__trace_payload "003A" #3

①

②

③
Attribute Table [biopsy]

ActivityId Value Offset

Mastectomy true #7

Lumpectomy true #10

Column-Base storage work under the
assumption that it is always possible to
decompose a relation ℜ(id, A1, . . . , An)
into n tables ℜi(id, Ai) such that
▷◁ 1≤i≤nℜi = ℜ

For the result representation, we relax the 1NF for
representing the result, an ordered sequence of
nested records ⟨i, j, L⟩ entailing that the j-th event
of the i-th trace satisfies the conditions of ρ. L lists
all the data activation, target, and Θ correlation
conditions being witnessed.

II. Temporal Algebraic Operators (xtLTLf)

xtLTLf: Syntax

Given optional A/T fields, an xtLTLf expression is defined as follows:

ρ::=µ|ν|β|δ

µ::=ActivityL,τ
A/T(a)|CompoundL,τ

A/T(a, lower≤κ≤upper)|FirstL,τ
A |LastL,τ

A |InitL(a)|EndsL(a)

ν::=Existsn(ρ)|Absencen(ρ)|Init(ρ)|Ends(ρ)|Nextτ(ρ)|Globallyτ?(ρ)|Futureτ?(ρ)|Notτ?(ρ)

β::=Untilτ?
Θ (ρ1,ρ2)|Andτ?

Θ (ρ1,ρ2)|Orτ?
Θ (ρ1,ρ2)

δ::=AndFutureτ
Θ(ρ1,ρ2)|AndGloballyτ

Θ(ρ1,ρ2)|AndNextGloballyτ
Θ(ρ1,ρ2)

The preliminary results show that xtLTLf is at least as expressive as LTLf where
the distinction between timed and untimed operators perserve the expected
“good” properties. We also provided a formalisation of activation, target, and
correlation condition for data-aware scenarios.

II. Temporal Algebraic Operators (xtLTLf)

Tutorial
Let’s suppose to evaluate aU ⃝ (b) over the
following log:

L = {dbacd, ab, cda, aadb, addb}

This can be expressed as

UntilTrue(ActivityL,τ
T (a), Nextτ(ActivityL,τ

A (b)))
ActivityL,τ

T (a) ActivityL,τ
A (b)

Nextτ

UntilTrue

i j L

1 3 T (3)
2 1 T (1)
3 3 T (3)
4 1 T (1)
4 2 T (2)
5 1 T (1)

i j L

1 2 A(2)
2 2 A(2)
4 4 A(4)
5 4 A(4)

i j L

1 1 A(2)
2 1 A(2)
4 3 A(4)
5 3 A(4)

i j L

1 1 A(2)
2 1 A(2)
4 1 T (1), T (2), A(4)

III. Conjunctive and Aggregation Queries

Without the need of changing the operators’ semantics nor the results being
returned, the same operators can express over the same “model” all of the
following queries, by simply changing the root node of the query plan:

CONJUNCTIVEQUERY(ρ1, . . . , ρn) = AndTrue(ρ1, . . . , AndTrue(ρn−1, ρn))

Max-SAT(ρ1, . . . , ρn) =

(|{l|∃j, L. ⟨i, j, L⟩ ∈ ρl}|
|M|

)
σi∈L

CONFIDENCE(ρ1, . . . , ρn) =

(|{i|∃j, L. ⟨i, j, L⟩ ∈ ρl}|
|ActLeaves(ρl)|

)
cl∈M

SUPPORT(ρ1, . . . , ρn) =

(|{i|∃j, L. ⟨i, j, L⟩ ∈ ρl}|
|L|

)
cl∈M

IV. Query Plan Optimisation (1/4)

AND OR

101 101.5 102 102.5 103 103.5 104 101 101.5 102 102.5 103 103.5 104

1e−01

1e+02

1e+05

Log Size

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ε 10 100 1000 10000 Algorithm OPTIMIZED BASELINE

M+

M+

M+

M+

1. For untimed And and Or, we can provide different implementations, one being
more memory efficient (Out of Primary Memory) and faster than the other.

IV. Query Plan Optimisation (2/4)

TIMED AND FUTURE TIMED AND GLOBALLY

101 101.5 102 102.5 103 103.5 104 101 101.5 102 102.5 103 103.5 104

1e−02

1e+00

1e+02

1e+04

Log Size

E
xe

cu
tio

n
T

im
e

(m
s)

ε 10 100 1000 10000 Algorithm VARIANT − 1 VARIANT − 2 LTLf REWRITING

M+

M+
M+

M+

M+

M+

M+

2a. As customary in the database world, by defining ad hoc operators subsuming
the evaluation of recurrent sub-expressions, we can design better algorithms!

IV. Query Plan Optimisation (3/4)
CHOICE

101 101.5 102 102.5 103 103.5 104

1e−02

1e+00

1e+02

Log Size

E
xe

cu
tio

n
T

im
e

(m
s)

ε 10 100 1000 10000 Algorithm OPTIMIZED LTLf REWRITING

M+

M+

2b. Given that our operators admit OrΘ(Future(ρ1), Future)(ρ2)) = OrΘ(ρ1, ρ2)
without breaking the “correctness”, we can reduce the amount of unnecessary

operations as well as memory allocations.

IV. Query Plan Optimisation (4/4)

AtomL,τ (p12)

OrτTrue

AtomL,τ (p9)

OrτTrue

AtomL,τ (p4) AtomL,τ (p17) A B C

OrτTrue OrτTrue

OrτTrue

OrτTrue

Absence1OrTrue Absence1

ConjunctiveQuery

CompoundL,τ (M.,CA 15.3 < 0) CompoundL,τ (M., 0 ≤ CA 15.3 < 50) CompoundL,τ (M., 50 ≤ CA 15.3 ≤ 10000) CompoundL,τ (M.,CA 15.3 > 1000) CompoundL,τ (M., biopsy < 0) CompoundL,τ (M., biopsy = 0) CompoundL,τ (M., 0 < biopsy < 1) CompoundL,τ (M., biopsy = 1) CompoundL,τ (M., biopsy > 1)

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

Andτ
True

R
u
n
D φ

-E
n
c
o
d
in
g
A
t
o
m
s

Orτ
True

AtomL,τ (p1) Orτ
True

AtomL,τ (p3) Orτ
True

AtomL,τ (p5) Orτ
True

AtomL,τ (p16) Orτ
True

AtomL,τ (p18) AtomL,τ (p20)

AttributeTableCA 15.3
L AttributeTable

biopsy
L

A
(A

to
m

L
,τ

·
)

48.00632—2.19849;

V. Temporal Model Mining. . .

Not Succession Precedence Responded Existence Response

Alternate Precedence Alternate Response Chain Precedence Chain Response

10 100 1000 10 100 1000 10 100 1000 10 100 1000

1e+01

1e+03

1e+05

1e+07

1e+01

1e+03

1e+05

1e+07

Log Size

E
xe

cu
tio

n
T

im
e

(m
s)

KnoBAB + MAX−SAT [HYBRID]

KnoBAB + MAX−SAT [VARIANT−1]

KnoBAB + Support [HYBRID]

KnoBAB + Support [VARIANT−1]

SQLMiner + Support

SQLMiner + Trace Info

M+ M+ M+ M+

SQLMiner. If compared to other SQL-driven mining algorithms (where a given set of declarative
clauses to be tested is previously generated through propositionalisation), our results show that our

solution outperforms similar querying tasks on PostgreSQL.

V. . . . and Conformance Checking

0

25

50

9000

12000

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Model

E
xe

cu
tio

n
T

im
e

(m
s)

Atomization Type KnoBAB + CQ KnoBAB + Support Declare Analyzer

Declare Analyzer. Our solution also outperforms ad-hoc Java implementations
for computing data-aware conformance checking solutions.

VI. Query Plan Parallelisation

Not Succession Precedence Responded Existence Response

Alternate Precedence Alternate Response Chain Precedence Chain Response

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

101

102

103

104

101

102

103

104

|ω|

E
xe

cu
tio

n
T

im
e

(m
s)

BLOCK−CYCLIC STATIC

BLOCKED STATIC

GUIDED SCHEDULE

MONOTONIC:DYNAMIC

TASK SIZE PREDICTION BLOCKED STATIC

TASK SIZE PREDICTION UNBALANCED DYNAMIC

The DAG query plan allows running a topological sort. By “layering” the query
plan, we can schedule which operators might be parallelised. Different scheduling

policies give different speed-ups exploited by reducing page faults!

VII.-VIII. Customisability/Interoperability

load TAB "/home/giacomo/test.tab" as "tab"; /* Loading Log */

display ACTTABLE for "tab"; /* Dump the internal representation as CSV */

auto -timed queryplan "aaai23" { /* Setting the semantics for declarative op. */
template "Example" args 2 := (EXISTS 1 t #2 target) U

(NEXT EXISTS 1 t #1 activation)
};

model -check /* Conformance Checking */
declare "Example" ("b", true , "a", true) /* Manually providing the model */

using "TraceIntersection" over "tab" /* Conjunctive query + Log name */
plan "aaai23" with operators "Hybrid" /* Semantics to adopt , type of algorithms */
display query -plan; /* Provide the DAG query plan */

By supporting xtLTLf instead of declarative clauses, our system allows the
definition of customary templates (queryplans) that can be loaded at runtime.
The running example could be run in KnoBAB (knobab server) with the
commands given above on a console (knobab client).

VII.-VIII. Customisability/Interoperability

import pandas as pd
from io import StringIO

Setting up the client
cli = uk_knobab_kinj_KINJ("localhost", 8795)
Generating a loading data query
q = uk_knobab_kinj_QueryCompiler.LoadDataQuery(uk_knobab_kinj_LogFormat.TAB ,

"/home/giacomo/test.tab", "tab",
False ,False ,False)

Sending the data loading request to the server
cli.PerformQuery(q)
Asking to dump the ActivityTable as a CSV string
q = uk_knobab_kinj_QueryCompiler.DisplayData(uk_knobab_kinj_Displays.Display(uk_knobab_kinj_DisplayTable.ACT_TABLE ,"tab"))
result = cli.PerformQuery(q)
Loading the CSV as a Pandas Dataframe
pd.read_csv(StringIO(result.message))

KnoBAB can be queried as a restful HTTP server (knobab server) and has API
(KINJ) supporting major programming language by transpiling code in Haxe!
The above example shows how to perform a query and getting answers in
Python by connecting to the KnoBAB server.

IX. Minimal Model Description Length

|L|=104 |L|=105

|L|=101 |L|=102 |L|=103

0.1 0.25 0.5 0.9 0.1 0.25 0.5 0.9

0.1 0.25 0.5 0.9

10−2

10−1

100

101

102

103

104

105

106

10−2

10−1

100

101

102

103

104

105

106

Minimum Support

D
at

a
Lo

ad
in

g/
In

de
xi

ng
 +

 M
in

in
g

T
im

e
(m

s)

Algorithm Bolt TopN Declare ADM ADM+S

It is possible to use KnoBAB as a library for
re-implementing existing algorithms (ADM).

Log Gen. Model, M∗ Bolt TopN ADM ADM+S

ChainPrecedence(b, c) ✓ ✗ ✓(+Choice,CoExist.) ✓(+Choice,CoExist.)
ChainResponse(d, e) ✓ ✗ ✓(+Choice,CoExist.) ✓(+Choice,CoExist.)

Choice(f, g) RespExistence(g, f) ✓(+Choice(g, f)) ✓(+Choice(g, f)) ✓(+Choice(g, f))
ExclChoice(h, a) ✓ ✗ ✗ ✓(+ ExclChoice(a, h))

Exists(b, 1) ✓ ✗ ✓ ✓

Init(e) ✓ ✓ ✓ ✓

Precedence(c, b) ✓ ✗ ✓(+Choice,RespEx.,CoEx.) ✓(+Choice,RespEx.)
RespExistence(e, f) Response(e, f) ✓ ✓ ✓

RespExistence(h, i)
RespExistence(i, h)

CoExistence(h, i)
✗

✗

✓(+ CoExistence(h, i))
✓(+ CoExistence(i, h))

✓

✓

Response(e, f) ✓ ✓(+ RespExistence(e, f)) ✓(+ RespExistence(e, f)) ✓(+ RespExistence(e, f))

|Mθ | 197 112 548 684
|M≥0.999| 46 35 119 127

Mining time (µ) 1.73·100ms 5.17 ·101ms 1.40 ·102ms 3.29 ·103ms

Our latest work shows that it is possible to obtain
compact temporal models without additional
learning tasks or “pruning scores” by only
enforcing non-zero confidence and traversing the
lattice of the declarative patterns.

Our solution also outperforms previous solutions
and renditions of previous algorithms on
KnoBAB.

Extra: Synthetic Logs via Graph Algorithms [Under Review]

X. Transparency and Result Replicability

The codebase is associated to test
sets run with googletest.
The papers’ datasets are released on
the Open Science Framework.
We exploit GitHub Workflows for
guaranteeing that the released code
compiles and that all the tests are
run satisfactorily.

https://github.com/datagram-db/knobab

https://github.com/datagram-db/knobab

