An Algebraic Logic of Partial Functions on Finite Traces

Eugenia Ternovska
Simon Fraser University

AAAI Spring Symposium, March 29, 2023

I will present a logic defined algebraically
similar to how

- the algebra of Regular Expressions gives us LDL_{f}
- the algebra of *-free Regular Expressions gives us LTL $_{f}$

But our algebra works with input data (relational structures)

It is an algebra of string-to-string transductions (partial functions on strings of relational structures)

$$
\text { trace } \frac{\text { algebraic term }}{\longrightarrow} \text { new trace }
$$

The algebra gives us a Dynamic Logic

In the design: a well-known trade-off

- want sufficient expressiveness e.g., imperative constructs: if-then-else, while
- need to keep the complexity manageable (ideally, P-time) since data can be large

Started from: FO(LFP), partitioned variables in atomic formulas into I/O, studied how information propagates

Initial work: [T. FROCOS'19], [ABSTV KR'20], [ABSTV ICDT'21]

A two-level syntax

$$
\alpha::=m(\varepsilon) \mid \text { id } \overbrace{|\curvearrowright \alpha| \alpha ; \alpha|\alpha \sqcup \alpha| \alpha^{\uparrow} \mid}^{\text {restrictions of } \neg, \wedge, \vee, *}(\mathrm{P}=\mathrm{Q}) \mid \quad \text { вя }\left(\mathrm{P}_{\text {now }} \neq \mathrm{Q}\right)
$$

all operation are determinism-preserving
ε is a free function variable ranging over Choice functions

$$
\tau:=\tau_{\text {EDB }} \uplus \tau_{\text {reg }}, \quad \mathrm{P}, \mathrm{Q} \in \tau_{\text {reg }} \text { are "registers" }
$$

At the bottom level, non-deterministic atomic actions $m \in \mathcal{M}$ are specified by a modification of unary conjunctive queries

Let \mathbf{U} denote all τ-structures over the same finite universe
Semantics is given via Choice functions $h: \mathcal{A} \rightarrow\left(\mathbf{U}^{+} \rightharpoonup \mathbf{U}^{+}\right)$ assign meaning to atomic actions in \mathcal{A} w.r.t. a transition system Tr

$$
\begin{aligned}
& m^{\boldsymbol{T r}}(h / \varepsilon)\left(s_{i}\right)=s_{i+1} \quad \text { iff } \quad\left(s_{i} \mapsto s_{i+1}\right) \in h(m(\varepsilon))
\end{aligned}
$$

h is extended to all terms: string-to-string transductions

The Algebra is Equivalent to a Dynamic Logic

$$
\begin{gathered}
\alpha::=m(\varepsilon)|\operatorname{id}| \curvearrowright \alpha|\alpha ; \alpha| \alpha \sqcup \alpha\left|\alpha^{\uparrow}\right|(\mathrm{P}=\mathrm{Q}) \mid \text { вя }\left(\mathrm{P}_{\text {now }} \neq \mathrm{Q}\right) \mid \varphi ? \\
\varphi::=\top|\neg \varphi| \varphi \wedge \varphi| | \alpha\rangle \varphi
\end{gathered}
$$

The state formulae in the second line are shorthands:

$$
\begin{aligned}
& \top:=\mathrm{id} \\
& \neg \varphi:=\curvearrowright \varphi \\
& \varphi \wedge \psi:=\varphi ; \psi \\
& \varphi ?:=\curvearrowright \curvearrowright \varphi \quad=\operatorname{Dom}(\varphi) \quad \text { (test action) } \\
& |\alpha\rangle \varphi:=\operatorname{Dom}(\alpha ; \varphi)
\end{aligned}
$$

Semantics of process expressions is as before
For state formulae we have:

$$
\mathbf{T r}, s \models \varphi(h / \varepsilon) \quad \text { iff } \quad \varphi^{\operatorname{Tr}}(h / \varepsilon)(s)=s
$$

In particular, the string s may contain just one structure \mathfrak{A}

Main Query with free variable ε

$$
\operatorname{Tr}, \mathfrak{A} \models|\alpha\rangle \top(\varepsilon)
$$

returns a set of Choice functions
(Tr is fixed, so can be omitted)

A computational problem specified by α

is an isomorphism-closed class \mathcal{P}_{α} of τ-structures \mathfrak{A} such that there exists h such that

$$
\mathfrak{A} \models|\alpha\rangle \top(h / \varepsilon)
$$

Certificates: equivalence classes of Choice functions

Problem: Size Four α_{4}
Given: A structure \mathfrak{A} with an empty vocabulary.
Question: Is $|\operatorname{dom}(\mathfrak{A})|$ equal to 4 ?

$$
\begin{gathered}
\alpha_{4}:=\text { GuessNew } P^{4} ; \curvearrowright \text { GuessNew } P, \\
\operatorname{Guess} P(\varepsilon):=\{P(x) \longleftarrow\} \\
\text { GuessNew } P(\varepsilon):=\text { Guess } P ; \text { вя }\left(P_{\text {now }} \neq P\right) .
\end{gathered}
$$

The answer to the query $\left.\mathfrak{A}|=| \alpha_{4}\right\rangle \top(\varepsilon)$, is non-empty, iff the input domain is of size 4

Other Cardinality examples: Same Size, EVEN, ...

Programming constructs are definable

$$
\begin{aligned}
& \text { if } \varphi \text { then } \alpha \text { else } \beta:=(\varphi \text { ? ; } \alpha) \sqcup \beta \\
& \text { while } \varphi \text { do } \alpha:=(\varphi ? ; \alpha)^{\uparrow} ;(\curvearrowright \varphi \text { ?) } \\
& \text { repeat } \alpha \text { until } \varphi:=\alpha ;((\curvearrowright \varphi ?) ; \alpha)^{\uparrow} ; \varphi \text { ? }
\end{aligned}
$$

the full power of regular expressions $\left(\cup, *^{c}\right)$ is not needed

Problem: s-t-Connectivity $\alpha(E, S, T)$
Given: Binary relation E, two constants s and t, as singleton-set relations S and T.
Question: Is t reachable from s by following the edges?

$$
\begin{aligned}
& \alpha(E, S, T):=M_{\text {base_case }} ; \text { repeat (} M_{\text {ind_case }} \text {; } \\
& \text { вя }(\text { Reach } \neq \text { Reach })) \text {; Copy until Reach }=T \text {. } \\
& M_{\text {base_case }}(\varepsilon):=\{\operatorname{Reach}(x) \longleftarrow S(x)\}, \\
& M_{\text {ind_case }}(\varepsilon):=\left\{\operatorname{Reach}^{\prime}(y) \longleftarrow \operatorname{Reach}(x), E(x, y)\right\} \text {, } \\
& \operatorname{Copy}(\varepsilon):=\quad\left\{\operatorname{Reach}(x) \longleftarrow \operatorname{Reach}^{\prime}(x)\right\} .
\end{aligned}
$$

The answer to the query $\mathfrak{A} \models|\alpha\rangle \top(\varepsilon)$, is non-empty, iff s-t reachability holds

Other examples: Same Generation, mod 2 Linear Equations ...

Analyze data complexity [Vardi:1982] of

$$
\mathfrak{A} \models|\alpha\rangle \top(\varepsilon)
$$

Theorem: The logic restricted to simple tests captures NP

For the full logic, data complexity is in PSPACE

To summarize, we presented an algebra (Dynamic Logic) interpreted as partial functions on strings of relational structures linear-time, finite traces, with complex nested tests

Current Work: algebraic conditions for P-time data complexity proof system (cyclic proofs),
(complexity of) validity, satisfiability and containment problems

Future Work: exact expressiveness of the propositional fragment expression complexity, strategic reasoning, normative reasoning, preferences, BPM, ...

Thank you!

Semantics, informally

Negation (Anti-Domain): $\curvearrowright \alpha$ - there is no outgoing α-transition

Composition: $\alpha ; \beta$ - execute sequentially

Preferential Union: $\alpha \sqcup \beta$ - perform α if it's defined, o.w. perform β

Maximum Iterate: α^{\uparrow} - output the longest transition of α^{*}

Comparison for Equality: $\mathrm{P}=\mathrm{Q}$ - compare the "content of" P, Q

Back Globally вg $\left(\mathrm{P}_{\text {now }} \neq \mathrm{Q}\right)$ - the "content of" P is new compared to Q earlier in the computation

