Grounding LTLf specifications in image sequences

Elena Umili
Sapienza University of Rome
Reference

Objective

• Exploit high-level symbolic **temporal knowledge** to increase performances of a sequence classifier in **visual tasks**

• Logical knowledge: **LTLf formula** over a **symbolic set** that is **not grounded in the data**

\[\phi : \text{three until two} \]

\[
\begin{align*}
\phi &= \text{False} \\
\text{three} &= \text{True} \\
\text{two} &= \text{False} \\
\end{align*}
\]

\[
\begin{align*}
\phi &= \text{False} \\
\text{three} &= \text{True} \\
\text{two} &= \text{False} \\
\end{align*}
\]

\[
\begin{align*}
\phi &= \text{True} \\
\text{three} &= \text{False} \\
\text{two} &= \text{True} \\
\end{align*}
\]

\[
\begin{align*}
\phi &= \text{???} \\
\text{three} &= \text{???} \\
\text{two} &= \text{???} \\
\end{align*}
\]
Symbol grounding

Mapping raw data into a finite set of boolean symbols with a known meaning.

A symbol is **grounded** in a dataset if we know the method to recognize it in the data.
Background
Logic Tensor Networks (LTN)

- LTN can reason and learn by using **both symbolic knowledge** and **raw data**
- It implements a logic called **Real Logic**, containing constants, function and predicate symbols, as First Order Logic (FOL)
- Any logic formula is interpreted in **fuzzy logic**
- Any piece of the logic can be **implemented** as a **neural network**
- Learning by **best satisfiability**
- We design a **recurrent LTN**, so to impose logic specifications that are extended in the time dimension
Method
Problem formulation

• **Objective**: Given a sequence of images $i[0], i[1],...,i[l]$ we want to classify the sequence as compliant or not with a given LTLf formula ϕ

• **Input**:
 - The formula ϕ
 - A set of annotated sequences $D = \{<x_1, y_1>, <x_2, y_2>,..., <x_n, y_n>\}$ where
 - x is a sequence of images
 - y is 1 if the sequence satisfy the formula, 0 otherwise
Method overview

1. Translate the LTLf formula to a DFA
2. Transform the DFA in a recurrent Logic Tensor Network
3. Train the network with image sequence labels so to maximize satisfiability
The neural network is composed of two parts:

- A **perception** part, implemented by a **trainable** convolutional neural network that classifies symbols from images,

- A **logic** part, represented by a **fixed** recurrent structure, that is a fuzzy correspondent of the automaton
Fuzzy automaton

Predicates used:
- $P_s(s_i, t)$ means: the automaton is in state i at time t
- $P_c(c_i, t)$ means symbol i is in image at time t
- $\text{Accepted}(x)$ means sequence of images x is accepted by the formula

Fuzzy automaton working:
- **Initial condition**
 \[P_s(s_0, 0) = \top \land (P_s(s_i, 0) = \bot \forall 1 \leq i \leq |S|) \]
- **Transition rule**
 \[P_s(s_j, t + 1) = \bigcup_{i: (i,j) \text{ is an edge of } A_{\phi}} P_s(s_i, t) \land e_{i,j}(p[t]) \]
- **Final condition:**
 \[\forall x \text{Accepted}(x) \leftrightarrow \bigcup_{s_i \in F} P_s(s_i, I) \]

Other notations:
- State at time t: $s[t] = [P_s(s_0, t), P_s(s_1, t), ..., P_s(s_{|S|}, t)]$
- Interpretation at time t: $p[t] = [P_c(c_0, t), P_c(c_1, t), ..., P_c(c_{|P|}, t)]$
- Truth value of the automaton edge between state i and j at time t: $e_{i,j}(p[t])$

Logic loss:
\[L = \sum_{i=0}^{i=n} (1 - s(x_i, y_i)) \]
Where $s(x, y)$ is the truth value of the final condition
Experiments
• Declare a declarative language used to model process in Business Process Management (BPM)
• It is composed of 20 types of activity constraints expressed as LTLf formulas
• We tested our approach on the declare constraints in mutually exclusive symbols setting and not mutually exclusive symbols setting
Sequence classification accuracy

Our approach (NS) achieves better performances of an LSTM-based neural network (DL)

Big dataset
(50% training traces, 85% training images, mutex symbols)

Small dataset
(40% training traces, 15% training images, mutex symbols)

Big non mutex dataset
(50% training traces, 85% training images, non-mutex symbols)
Image classification accuracy

We can reach high performances in single image classification without using any single image label.
Conclusions
Conclusions

• we propose a framework for exploiting high-level logical knowledge in the form of LTLf formulas
• we use this knowledge to map images into a set of symbols with a known meaning without any single image label
• our approach outperforms the end-to-end approach based on recurrent neural networks
Current and future work

• Apply to non-symbolic non-markovian Reinforcement Learning tasks
• Extend to tasks expressed in natural language