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Objective

* Exploit high-level symbolic temporal knowledge to increase performances of a sequence
classifier in visual tasks

* Logical knowledge: LTLf formula over a symbolic set that is not grounded in the data
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Symbol
grounding

Mapping raw data into a
finite set of boolean
symbols with a known
meaning

A symbol is grounded in a
dataset if we know the
method to recognize it in
the data
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* LTN can reason and learn by using both symbolic knowledge and raw data

* It implements a logic called Real Logic, containing constants, function and predicate
symbols, as First Order Logic (FOL)

* Any logic formula is interpreted in fuzzy logic
* Any piece of the logic can be implemented as a neural network

* Learning by best satisfiability

* We design a recurrent LTN, so to impose logic specifications that are extended in the
time dimension



Method




Problem formulation

* Objective: Given a sequence of images i[0], i[1],...,i[l]] we want to classify the sequence as
compliant or not with a given LTLf formula ¢

* |Input:
* The formula ¢ - _
 Aset of annotated sequences D = {_< X1 Y1 25 < X2 Y2 250 < Xns Y >} where
* X is a sequence of images
* yis 1if the sequence satisfy the formula, 0 otherwise



Method
overview

1. Translate the LTLf formula to a DFA
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2. Transform the DFA in a recurrent Logic Tensor - \
Network
3. Train the network with image sequence labels so \

to maximize satisfiability




Recurrent LTN architecture
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-Uzzy automaton

Predicates used:

* P(s;,t) means: the automaton is in statei
at timet

e Pdc,t) means symboliisin imageat time't

o Accepted(x) means sequence of imagesx is
accepted by the formula

Other notations:
Stateattime't s[t] = [Py(so,t), Ps(s1,1), ..., Ps(sis)> 1)

Interpretationattime t
plt] = [Plcp, 1), Peley, ), v~Pc(C|P|’ t)]

Truth value of the automaton edge between

stateiandjattimet
& ;(plt])

Fuzzy automaton working:
* Initial condition

P(sp,0) = TA(Py(s;,0) = L V1 <i<|S|)

* Transitionrule

P(sit+1) = L Py(sit) A e j(plt])
i:(i,j) is an edge of Ay

 Final condition:

VxAccepted(x) < | ) Py(s;, 1)

SiEF
Logic loss: ,
1I=n
L=>1-s(xm)
i=0

Where s(x, y) is the truth value of the final
condition
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DECLARE

e Declare a declarative language used to model process in Business
Process Management (BPM)

* It is composed of 20 types of activity constraints expressed as LTLf
formulas

* We tested our approach on the declare constraints in mutually
exclusive symbols setting and not mutually exclusive symbols setting



Sequence classification accuracy

Our approach (NS) achieves better performances of an Istm-based neural network (DL)
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Image classification accuracy

We can reach high performances in single image classification without using any single image label
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Conclusions

* we propose a framework for exploiting high-level logical knowledge
in the form of LTLf formulas

* we use this knowledge to map images into a set of symbols with a
known meaning without any single image label

e our approach outperforms the end-to-end approach based on
recurrent neural networks



Current and future work

* Apply to non-symbolic non-markovian Reinforcement Learning tasks
* Extend to tasks expressed in natural language




	Diapositiva 1: Grounding LTLf specifications in image sequences
	Diapositiva 2: Reference
	Diapositiva 3: Objective
	Diapositiva 4: Symbol grounding
	Diapositiva 5: Background
	Diapositiva 7: Logic Tensor Networks (LTN)
	Diapositiva 8: Method
	Diapositiva 9: Problem formulation
	Diapositiva 10: Method overview
	Diapositiva 11: Recurrent LTN architecture
	Diapositiva 12: Fuzzy automaton
	Diapositiva 13: Experiments
	Diapositiva 14: DECLARE
	Diapositiva 16: Sequence classification accuracy
	Diapositiva 17: Image classification accuracy
	Diapositiva 18: Conclusions
	Diapositiva 19: Conclusions
	Diapositiva 20: Current and future work

